Skip to main content

image preprocessing

Project description

imagepreprocessing

  • Creates train ready data for keras or yolo in a single line
  • Makes prediction with using keras model
  • Plots confusion matrix

Install

pip install imagepreprocessing

Usage

from imagepreprocessing import create_training_data_keras, create_training_data_yolo, create_only_path_files_yolo, make_prediction, create_confusion_matrix

Create training data for keras

source_path = "datasets/deep_learning/food-101/only3"
save_path = "food10class1000sampleeach"
create_training_data(source_path, save_path, img_size = 299, validation_split=0.1, percent_to_use=0.1, grayscale = True, files_to_exclude=["excludemoe","hi.txt"])
File name: apple_pie - 1/3  Image:100/100
File name: baby_back_ribs - 2/3  Image:100/100
File name: baklava - 3/3  Image:100/100

validation x: 30 validation y: 30
train x: 270 train y: 270

shape of train x: (270, 299, 299, 1)
shape of train y: (270, 3)
shape of validate x: (30, 299, 299, 1)
shape of validate y: (30, 3)

file saved -> C:\Users\can\Desktop\food3class100sampleeach_x_train.pkl
file saved -> C:\Users\can\Desktop\food3class100sampleeach_y_train.pkl
file saved -> C:\Users\can\Desktop\food3class100sampleeach_x_validation.pkl
file saved -> C:\Users\can\Desktop\food3class100sampleeach_y_validation.pkl

Make prediction with a keras model and plot confusion matrix

images_path = "deep_learning/test_images/food2"
model_path = "deep_learning/saved_models/alexnet.h5"

predictions = make_prediction(images_path, model_path)

class_names = ["apple", "melon", "orange"]
labels = [0,0,0,1,1,1,2,2,2]
create_confusion_matrix(predictions, labels, class_names=class_names)
1.jpg : 0
2.jpg : 0
3.jpg : 0
4.jpg : 1
5.jpg : 1
6.jpg : 2
7.jpg : 2
8.jpg : 2
9.jpg : 1
Confusion matrix, without normalization
[[3 0 0]
 [0 2 1]
 [0 1 2]]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imagepreprocessing-0.3.0.tar.gz (7.1 kB view details)

Uploaded Source

File details

Details for the file imagepreprocessing-0.3.0.tar.gz.

File metadata

  • Download URL: imagepreprocessing-0.3.0.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.39.0 CPython/3.7.3

File hashes

Hashes for imagepreprocessing-0.3.0.tar.gz
Algorithm Hash digest
SHA256 a05d0ff6abcfcd83f9fa2759ee829466e7485467bf7baac6dedef72b4d9cecfd
MD5 0f96b0761adbf7153d534c543ac916c8
BLAKE2b-256 f0055d9106eab059201f233eb54ee50fa3e7553124c3341d5fa47644c8822938

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page