Skip to main content

A CLI and API client library for interfacing with Imandra's web APIs

Project description

Imandra CLI and API client library

Imandra is a cloud-native automated reasoning engine for analysis of algorithms and data.

This package contains the imandra Python library for interacting with Imandra's web APIs. It includes:

  • imandra.core, which provides programmatic access to Imandra X, Imandra's core reasoning engine.
  • imandra.u.agents.* and imandra.u.reasoners.*, bindings to Imandra Universe Agents and Reasoners.
  • imandra.ipl, tools for analysing Imandra Protocol Language (IPL) files.

If you're interested in developing Imandra X or IPL models, you may also want to see the Imandra documentation.

The imandra python API reference documentation is available here.

Authentication

First obtain an API key from https://universe.imandra.ai.

The Python library will read the API key from the first of:

  1. The api_key parameter passed when instantiating a Client.
  2. The IMANDRA_API_KEY environment variable.
  3. The file $HOME/.config/imandra/api_key (MacOS and Linux) or %USERPROFILE%\AppData\Local\imandra\api_key (Windows)

Example: Imandra Core

First, ensure dependencies for the core module are installed. Note that imandra.core requires Python >= 3.12.

$ pip install 'imandra[core]'
$ ipython
...
In [1]: from imandra.core import Client

In [2]: client = Client()

In [3]: client.eval_src('let f x = if x > 0 then if x * x < 0 then x else x + 1 else x')
Out[3]: success: true

In [4]: result = client.verify_src('fun x -> x > 0 ==> f x > 0')

In [5]: result
Out[5]:
proved {
  proof_pp: "..."
}

In [6]: print(result.proved.proof_pp)
{ id = 1; concl = `|- x > 0 ==> f x > 0`;
  view =
  T_deduction {
    premises =
    [("p",
      [{ id = 0; concl = `|- x > 0 ==> f x > 0`;
         view = T_deduction {premises = []} }
        ])
      ]}
  }

In [7]: result = client.instance_src('fun x -> f x = 43')

In [8]: result
Out[8]:
sat {
  model {
    m_type: Instance
    src: "module M = struct\n\n  let x = 42\n\n end\n"
    artifact {
      kind: "cir.model"
      data: "..."
      api_version: "v8"
    }
  }
}

In [9]: print(result.sat.model.src)
module M = struct

  let x = 42

 end

In [10]: result = client.decompose('f')

In [11]: result
Out[11]:
artifact {
  kind: "cir.fun_decomp"
  data: "..."
  api_version: "v8"
}
regions_str {
  constraints_str: "not (x > 0)"
  invariant_str: "x"
  model_str {
    k: "x"
    v: "0"
  }
}
regions_str {
  constraints_str: "not (x * x < 0)"
  constraints_str: "x > 0"
  invariant_str: "x + 1"
  model_str {
    k: "x"
    v: "1"
  }
}
task {
  id {
    id: "task:decomp:rE3VSX-t5kbrrAksQ4saBrMUs2uHTXfu-CqeZunV9aE="
  }
  kind: TASK_DECOMP
}

Example: Imandra Universe reasoners

$ pip install imandra
$ ipython

In [1]: from imandra.u.reasoners.prover9 import Client

In [2]: client = Client()

In [3]: input = "formulas(sos).\n\n  e * x = x.\n  x'\'' * x = e.\n  (x * y) * z = x * (y * z).\n\n  x * x = e.\n\nend_of_list.\n\nformulas(goals).\n\n  x * y = y * x.\n\nend_of_list ...: ."

In [4]: result = client.eval(input)

In [5]: print(result['results'][0])
============================== Prover9 ===============================
Prover9 (64) version 2009-11A, November 2009.
Process 18 was started by universe on localhost,
Mon Jan  6 14:52:26 2025
The command was "/imandra-universe/prover9/bin/prover9 -t 45".
============================== end of head ===========================

============================== INPUT =================================

formulas(sos).
e * x = x.
x''' * x = e.
(x * y) * z = x * (y * z).
x * x = e.
end_of_list.

formulas(goals).
x * y = y * x.
end_of_list.

============================== end of input ==========================

...

============================== PROOF =================================

% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 16.
% Level of proof is 7.
% Maximum clause weight is 11.000.
% Given clauses 12.

1 x * y = y * x # label(non_clause) # label(goal).  [goal].
2 e * x = x.  [assumption].
3 x''' * x = e.  [assumption].
4 (x * y) * z = x * (y * z).  [assumption].
5 x * x = e.  [assumption].
6 c2 * c1 != c1 * c2.  [deny(1)].
7 x''' * (x * y) = y.  [para(3(a,1),4(a,1,1)),rewrite([2(2)]),flip(a)].
8 x * (x * y) = y.  [para(5(a,1),4(a,1,1)),rewrite([2(2)]),flip(a)].
9 x * (y * (x * y)) = e.  [para(5(a,1),4(a,1)),flip(a)].
11 x'''''' * e = x.  [para(3(a,1),7(a,1,2))].
13 x''' * e = x.  [para(5(a,1),7(a,1,2))].
15 x''' = x.  [back_rewrite(11),rewrite([13(8)])].
16 x * e = x.  [back_rewrite(13),rewrite([15(3)])].
19 x * (y * x) = y.  [para(9(a,1),8(a,1,2)),rewrite([16(2)]),flip(a)].
24 x * y = y * x.  [para(19(a,1),8(a,1,2))].
25 $F.  [resolve(24,a,6,a)].

============================== end of proof ==========================

============================== STATISTICS ============================

Given=12. Generated=122. Kept=23. proofs=1.
Usable=8. Sos=3. Demods=12. Limbo=2, Disabled=14. Hints=0.
Kept_by_rule=0, Deleted_by_rule=0.
Forward_subsumed=99. Back_subsumed=0.
Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.
New_demodulators=21 (0 lex), Back_demodulated=9. Back_unit_deleted=0.
Demod_attempts=770. Demod_rewrites=156.
Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.
Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.
Megabytes=0.06.
User_CPU=0.01, System_CPU=0.00, Wall_clock=0.

============================== end of statistics =====================

============================== end of search =========================

THEOREM PROVED

Example: Imandra Universe agents

$ pip install imandra[universe]
$ ipython

In [1]: from imandra.u.agents.code_logician.graph import GraphState
   ...: from imandra.u.agents.code_logician.command import RootCommand
   ...: from imandra.u.agents import create_thread_sync, get_remote_graph

In [2]: graph = get_remote_graph("code_logician")
   ...: create_thread_sync(graph)

In [3]: gs = GraphState()
   ...: src_code = """def g(x: int) -> int:
   ...:     if x > 22:
   ...:         return 9
   ...:     else:
   ...:         return 100 + x
   ...: 
   ...: def f(x: int) -> int:
   ...:     if x > 99:
   ...:         return 100
   ...:     elif 70 > x > 23:
   ...:         return 89 + x
   ...:     elif x > 20:
   ...:         return g(x) + 20
   ...:     elif x > -2:
   ...:         return 103
   ...:     else:
   ...:         return 99"""
   ...: gs = GraphState()
   ...: gs = gs.add_commands([
   ...:     RootCommand(type="init_state", src_code=src_code, src_lang="python"),
   ...:     RootCommand(type="gen_formalization_data"),
   ...:     RootCommand(type="gen_model"),
   ...: ])
   ...: res = await gs.run(graph)
   ...: gs = res[0]

In [4]: fstate = gs.last_fstate
   ...: fstate.status
Out[4]: Transparent

In [5]: print(fstate.iml_code)
let g (x : int) : int =
  if x > 22 then
    9
  else
    100 + x

let f (x : int) : int =
  if x > 99 then
    100
  else if 70 > x && x > 23 then
    89 + x
  else if x > 20 then
    g x + 20
  else if x > -2 then
    103
  else
    99

In [6]: gs2 = gs.add_commands([
   ...:     RootCommand(type="gen_region_decomps", function_name="f"),
   ...:     RootCommand(type="gen_test_cases", decomp_idx=0),
   ...: ])
   ...: res2 = await gs2.run(graph)
   ...: gs2 = res2[0]
   ...: test_cases = gs2.last_fstate.region_decomps[0].test_cases
   ...: test_cases['src']
Out[6]: 
[{'args': {'x': '100'},
  'expected_output': '100',
  'docstr': 'Constraints:\n    - `x >= 100`\nInvariant:\n    - `100`\n'},
 {'args': {'x': '24'},
  'expected_output': '113',
  'docstr': 'Constraints:\n    - `x >= 24`\n    - `x <= 69`\nInvariant:\n    - `89 + x`\n'},
 {'args': {'x': '23'},
  'expected_output': '29',
  'docstr': 'Constraints:\n    - `x = 23`\nInvariant:\n    - `9 + 20`\n'},
 {'args': {'x': '21'},
  'expected_output': '141',
  'docstr': 'Constraints:\n    - `x >= 21`\n    - `x <= 22`\nInvariant:\n    - `100 + x + 20`\n'},
 {'args': {'x': '0'},
  'expected_output': '103',
  'docstr': 'Constraints:\n    - `x >= (-1)`\n    - `x <= 20`\nInvariant:\n    - `103`\n'},
 {'args': {'x': '-2'},
  'expected_output': '99',
  'docstr': 'Constraints:\n    - `x <= (-2)`\nInvariant:\n    - `99`\n'},
 {'args': {'x': '70'},
  'expected_output': '29',
  'docstr': 'Constraints:\n    - `x >= 70`\n    - `x <= 99`\nInvariant:\n    - `9 + 20`\n'}]

Example: IPL

$ pip install imandra
$ ipython

In [1]: from imandra.ipl import Client

In [2]: client = Client()

In [3]: job_id = client.unsat_analysis('/path/to/model.ipl')

In [4]: client.status(job_id)
Out[4]: 'processing'

In [5]: client.wait(job_id)
Out[5]: 'done'

In [6]: data = client.data(job_id)

In [7]: print(data['content'].decode('ascii'))
For message flow `simple_orders_one`, unsat cores: []

CLI

The imandra package also adds an entry point called imandra-cli which exposes the imandra library functionality in a more discoverable way:

$ python3 -m venv ./my/venv
...
$ ./my/venv/pip install imandra
...
$ ./my/venv/bin/imandra-cli --help
usage: imandra [-h] auth,ipl,core,rule-synth,cfb ...

Imandra CLI

positional arguments:
  {auth,ipl,core,rule-synth,cfb}

optional arguments:
  -h, --help            show this help message and exit

On Windows, the entry point can be found as .\my\venv\Scripts\imandra-cli.exe.

CLI Authentication

This is the first step to start using the Imandra CLI. Our cloud environment requires a user account, which you can setup like this:

$ ./my/venv/bin/imandra-cli auth login

and follow the prompts to authenticate. This will create the relevant credentials in ~/.imandra (or %APPDATA%\imandra on Windows).

You should now be able to invoke CLI commands that require authentication.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imandra-2.4.1.tar.gz (147.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

imandra-2.4.1-py3-none-any.whl (238.5 kB view details)

Uploaded Python 3

File details

Details for the file imandra-2.4.1.tar.gz.

File metadata

  • Download URL: imandra-2.4.1.tar.gz
  • Upload date:
  • Size: 147.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.8.22

File hashes

Hashes for imandra-2.4.1.tar.gz
Algorithm Hash digest
SHA256 cda4bcfe05d342a3b983e18009c3e6f4c73a6c99991a6d2bc10c840316a40b79
MD5 7fe376057f1065f8dea06e23240087b7
BLAKE2b-256 b60f27e8f57d5de5ce7369ad4fc67a25cfeef5c4cc0f3b16034847e8c090e672

See more details on using hashes here.

File details

Details for the file imandra-2.4.1-py3-none-any.whl.

File metadata

  • Download URL: imandra-2.4.1-py3-none-any.whl
  • Upload date:
  • Size: 238.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.8.22

File hashes

Hashes for imandra-2.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 065a5aa46085a22d76007d3c9d20660a54114c4ad70af71ecb8717a603dc929f
MD5 cd7b74daafd2d2320b7edf3bdd91962d
BLAKE2b-256 44804c28e27340fd2a9431f0a2cb1f6cb56c187d5be497f42fb0462f2c5f7f8f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page