General python code for analysis pipeline
Project description
Inflow
Core package for analysis, and pipelining utilities in the Haiss Lab
Find the documentation for the functions of this package in a searchable website here : https://haisslab.pages.pasteur.fr/analysis-packages/Inflow/
Requirements
Inflow requires python 3.7 or later, and is tested on Windows 10.
Installing
Installing the package via pip typically takes a few seconds. To install, activate your developpement environment :
conda activate <myenvironment>
If you don't have an environment or conda installed, follow these instructions
Then run the Inflow install using :
pip install git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git
NB:
This package is still under active development, for the best experience please regularly update the package by running :
pip install --force-reinstall --no-deps -U git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git
For dev environment (expect bugs), use this one :
pip install --force-reinstall --no-deps git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git@dev
This will force the reinstallation of the package, without the need to do a pip uninstall Inflow
first, and without reinstalling the dependancies like numpy etc (hence faster).
For pre-realeases environment (dev after minimal testing, please don't hesitate to report bugs), use this one :
pip install --force-reinstall --no-deps -U git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git@pre-releases
Usage
import Inflow
Inflow.load.tdms("mytdmsfile.tdms").
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file inflow_haisslab-1.2.22.tar.gz
.
File metadata
- Download URL: inflow_haisslab-1.2.22.tar.gz
- Upload date:
- Size: 148.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4926f2c070f45f7f4c3476c65a89115fa63eb7f628aa877c45811c8b5feb1789 |
|
MD5 | fbcd4e6fbfc8bc9cae0f62ad93e49fc5 |
|
BLAKE2b-256 | 02fe7b874504d07480b70d1ef6ac0f6e57ac4d73fc04efc782536d8e79be8559 |
File details
Details for the file inflow_haisslab-1.2.22-py3-none-any.whl
.
File metadata
- Download URL: inflow_haisslab-1.2.22-py3-none-any.whl
- Upload date:
- Size: 162.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 38a41ce207afa97c5c56401e8eca2e8364f4fae7cd381f0b25a9639a67eb7646 |
|
MD5 | f13f808c9546b7f193eabd1a3ad8d365 |
|
BLAKE2b-256 | 630b2666917cabee4b47fca885393126e28c2b3ce5a5703b8bfca107e026287e |