Skip to main content

General python code for analysis pipeline

Project description

Inflow

Core package for analysis, and pipelining utilities in the Haiss Lab
Find the documentation for the functions of this package in a searchable website here : https://haisslab.pages.pasteur.fr/analysis-packages/Inflow/

Requirements

Inflow requires python 3.7 or later, and is tested on Windows 10.

Installing

Installing the package via pip typically takes a few seconds. To install, activate your developpement environment :

conda activate <myenvironment>

If you don't have an environment or conda installed, follow these instructions
Then run the Inflow install using :

pip install git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git

NB:
This package is still under active development, for the best experience please regularly update the package by running :

pip install --force-reinstall --no-deps -U git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git

For dev environment (expect bugs), use this one :

pip install --force-reinstall --no-deps git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git@dev

This will force the reinstallation of the package, without the need to do a pip uninstall Inflow first, and without reinstalling the dependancies like numpy etc (hence faster).

For pre-realeases environment (dev after minimal testing, please don't hesitate to report bugs), use this one :

pip install --force-reinstall --no-deps -U git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git@pre-releases

Usage

import Inflow
Inflow.load.tdms("mytdmsfile.tdms").

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

inflow_haisslab-1.2.22.tar.gz (148.9 kB view details)

Uploaded Source

Built Distribution

inflow_haisslab-1.2.22-py3-none-any.whl (162.0 kB view details)

Uploaded Python 3

File details

Details for the file inflow_haisslab-1.2.22.tar.gz.

File metadata

  • Download URL: inflow_haisslab-1.2.22.tar.gz
  • Upload date:
  • Size: 148.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.10

File hashes

Hashes for inflow_haisslab-1.2.22.tar.gz
Algorithm Hash digest
SHA256 4926f2c070f45f7f4c3476c65a89115fa63eb7f628aa877c45811c8b5feb1789
MD5 fbcd4e6fbfc8bc9cae0f62ad93e49fc5
BLAKE2b-256 02fe7b874504d07480b70d1ef6ac0f6e57ac4d73fc04efc782536d8e79be8559

See more details on using hashes here.

File details

Details for the file inflow_haisslab-1.2.22-py3-none-any.whl.

File metadata

File hashes

Hashes for inflow_haisslab-1.2.22-py3-none-any.whl
Algorithm Hash digest
SHA256 38a41ce207afa97c5c56401e8eca2e8364f4fae7cd381f0b25a9639a67eb7646
MD5 f13f808c9546b7f193eabd1a3ad8d365
BLAKE2b-256 630b2666917cabee4b47fca885393126e28c2b3ce5a5703b8bfca107e026287e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page