A Python package to parse structured information from recipe ingredient sentences
Reason this release was yanked:
No upper limit on Python version set.
Project description
Ingredient Parser
The Ingredient Parser package is a Python package for parsing structured information out of recipe ingredient sentences.
1 large onion, finely chopped
becomes
{
"quantity": 1,
"unit": "large",
"name": "onion",
"comment": "finely chopped"
}
Documentation
Documentation on using the package and training the model can be found at https://ingredient-parser.readthedocs.io/en/latest/.
Quick Start
Install the package using pip
python -m pip install ingredient-parser-nlp
Import the ```parse_ingredient`` function and pass it an ingredient sentence.
>>> from ingredient_parser import parse_ingredient
>>> parse_ingredient("3 pounds pork shoulder, cut into 2-inch chunks")
{'sentence': '3 pounds pork shoulder, cut into 2-inch chunks',
'quantity': '3',
'unit': 'pound',
'name': 'pork shoulder',
'comment': ', cut into 2-inch chunks',
'other': ''}
# Output confidence for each label
>>> parse_ingredient("3 pounds pork shoulder, cut into 2-inch chunks", confidence=True)
{'sentence': '3 pounds pork shoulder, cut into 2-inch chunks',
'quantity': '3',
'unit': 'pound',
'name': 'pork shoulder',
'comment': ', cut into 2-inch chunks',
'other': '',
'confidence': {'quantity': 0.9986,
'unit': 0.9967,
'name': 0.9535,
'comment': 0.9967,
'other': 0}}
The returned dictionary has the format
{
"sentence": str,
"quantity": str,
"unit": str,
"name": str,
"comment": Union[List[str], str],
"other": Union[List[str], str]
}
Model accuracy
The model provided in ingredient-parser/
directory has the following accuracy on a test data set of 25%:
Sentence-level results:
Total: 9277
Correct: 7689
-> 82.88%
Word-level results:
Total: 52931
Correct: 50051
-> 94.56%
Development
The development dependencies are in the requirements-dev.txt
file.
Note that development includes training the model.
-
Black
is used for code formatting. -
isort
is used for import sorting. -
flake8
is used for linting. Note the line length standard (E501) is ignored. -
pyrigt
is used for type static analysis.
The documentation dependencies are in the requirement-doc.txt
file.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ingredient_parser_nlp-0.1.0a1.tar.gz
.
File metadata
- Download URL: ingredient_parser_nlp-0.1.0a1.tar.gz
- Upload date:
- Size: 790.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
b4397d79869a16ba1d626e3fc07fc8e5d8d6f59871789c80b19be8e3dc7358ca
|
|
MD5 |
42c44c1cf9e907cc5218d3fc74d0ef57
|
|
BLAKE2b-256 |
efc98c752e891a8b268a5c4e4c3bdbf10f942c227eb0a2eee693494532c5025d
|
File details
Details for the file ingredient_parser_nlp-0.1.0a1-py3-none-any.whl
.
File metadata
- Download URL: ingredient_parser_nlp-0.1.0a1-py3-none-any.whl
- Upload date:
- Size: 787.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
cd7f0965e6e0da3400b19ecd9fc0277bdba20a439266eccb7be02d4079f264e5
|
|
MD5 |
8db6360706ec1837023d3087fd124586
|
|
BLAKE2b-256 |
c04aa232f3c4c5ad37f19fa04d7d73996a33ab9b963600f4354aa30fffab9c27
|