Skip to main content

Python dependency injection framework.

Project description

python-inject Build Status

Dependency injection the python way, the good way.

Key features

  • Fast.
  • Thread-safe.
  • Simple to use.
  • Does not steal class constructors.
  • Does not try to manage your application object graph.
  • Transparently integrates into tests.
  • Autoparams leveraging type annotations.
  • Supports type hinting in Python 3.5+.
  • Supports Python 3.9+ (v5.*), 3.5-3.8 (v4.*) and Python 2.7–3.5 (v3.*).
  • Supports context managers.

Python Support

Python Inject Version
3.9+ 5.0+
3.6-3.8 4.1+, < 5.0
3.5 4.0
< 3.5 3.*


Use pip to install the lastest version:

pip install inject

Autoparams example

@inject.autoparams returns a decorator which automatically injects arguments into a function that uses type annotations. This is supported only in Python >= 3.5.

def refresh_cache(cache: RedisCache, db: DbInterface):

There is an option to specify which arguments we want to inject without attempts of injecting everything:

@inject.autoparams('cache', 'db')
def sign_up(name, email, cache: RedisCache, db: DbInterface):

Step-by-step example

# Import the inject module.
import inject

# `inject.instance` requests dependencies from the injector.
def foo(bar):
    cache = inject.instance(Cache)'bar', bar)

# `inject.params` injects dependencies as keyword arguments or positional argument. 
# Also you can use @inject.autoparams in Python 3.5, see the example above.
@inject.params(cache=Cache, user=CurrentUser)
def baz(foo, cache=None, user=None):'foo', foo, user)

# this can be called in different ways:
# with injected arguments

# with positional arguments
baz('foo', my_cache)

# with keyword arguments
baz('foo', my_cache, user=current_user)

# `inject.param` is deprecated, use `inject.params` instead.
@inject.param('cache', Cache)
def bar(foo, cache=None):'foo', foo)

# `inject.attr` creates properties (descriptors) which request dependencies on access.
class User(object):
    cache = inject.attr(Cache)
    def __init__(self, id): = id

    def save(self):'users', self)
    def load(cls, id):
        return cls.cache.load('users', id)

# Create an optional configuration.
def my_config(binder):
    binder.bind(Cache, RedisCache('localhost:1234'))

# Configure a shared injector.

# Instantiate User as a normal class. Its `cache` dependency is injected when accessed.
user = User(10)

# Call the functions, the dependencies are automatically injected.

Context managers

Binding a class to an instance of a context manager (through bind or bind_to_constructor) or to a function decorated as a context manager leads to the context manager to be used as is, not via with statement.

def get_file_sync():
    obj = MockFiel()
    yield obj

async def get_conn_async():
    obj = MockConnection()
    yield obj

def config(binder):
    binder.bind_to_provider(MockFile, get_file_sync)
    binder.bind(int, 100)
    binder.bind_to_provider(str, lambda: "Hello")
    binder.bind_to_provider(MockConnection, get_conn_sync)


def example(conn: MockConnection, file: MockFile):
    # Connection and file will be automatically destroyed on exit.

Usage with Django

Django can load some modules multiple times which can lead to InjectorException: Injector is already configured. You can use configure(once=True) which is guaranteed to run only once when the injector is absent:

import inject
inject.configure(my_config, once=True)


In tests use inject.configure(callable, clear=True) to create a new injector on setup, and optionally inject.clear() to clean up on tear down:

class MyTest(unittest.TestCase):
    def setUp(self):
        inject.configure(lambda binder: binder
            .bind(Cache, MockCache()) \
            .bind(Validator, TestValidator()),
    def tearDown(self):

Composable configurations

You can reuse configurations and override already registered dependencies to fit the needs in different environments or specific tests.

    def base_config(binder):
        # ... more dependencies registered here
        binder.bind(Validator, RealValidator())
        binder.bind(Cache, RedisCache('localhost:1234'))

    def tests_config(binder):
        # reuse existing configuration

        # override only certain dependencies
        binder.bind(Validator, TestValidator())
        binder.bind(Cache, MockCache())
    inject.configure(tests_config, allow_override=True, clear=True)


After configuration the injector is thread-safe and can be safely reused by multiple threads.

Binding types

Instance bindings always return the same instance:

redis = RedisCache(address='localhost:1234')
def config(binder):
    binder.bind(Cache, redis)

Constructor bindings create a singleton on injection:

def config(binder):
    # Creates a redis cache singleton on first injection.
    binder.bind_to_constructor(Cache, lambda: RedisCache(address='localhost:1234'))

Provider bindings call the provider on injection:

def get_my_thread_local_cache():

def config(binder):
    # Executes the provider on each injection.
    binder.bind_to_provider(Cache, get_my_thread_local_cache) 

Runtime bindings automatically create singletons on injection, require no configuration. For example, only the Config class binding is present, other bindings are runtime:

class Config(object):

class Cache(object):
    config = inject.attr(Config)

class Db(object):
    config = inject.attr(Config)

class User(object):
    cache = inject.attr(Cache)
    db = inject.attr(Db)
    def load(cls, user_id):
        return cls.cache.load('users', user_id) or cls.db.load('users', user_id)
inject.configure(lambda binder: binder.bind(Config, load_config_file()))
user = User.load(10)

Disabling runtime binding

Sometimes runtime binding leads to unexpected behaviour. Say if you forget to bind an instance to a class, inject will try to implicitly instantiate it.

If an instance is unintentionally created with default arguments it may lead to hard-to-debug bugs. To disable runtime binding and make sure that only explicitly bound instances are injected, pass bind_in_runtime=False to inject.configure.

In this case inject immediately raises InjectorException when the code tries to get an unbound instance.


It is possible to use any hashable object as a binding key. For example:

import inject

inject.configure(lambda binder: \
    binder.bind('host', 'localhost') \
    binder.bind('port', 1234))

Why no scopes?

I've used Guice and Spring in Java for a lot of years, and I don't like their scopes. python-inject by default creates objects as singletons. It does not need a prototype scope as in Spring or NO_SCOPE as in Guice because python-inject does not steal your class constructors. Create instances the way you like and then inject dependencies into them.

Other scopes such as a request scope or a session scope are fragile, introduce high coupling, and are difficult to test. In python-inject write custom providers which can be thread-local, request-local, etc.

For example, a thread-local current user provider:

import inject
import threading

# Given a user class.
class User(object):

# Create a thread-local current user storage.
_LOCAL = threading.local()

def get_current_user():
    return getattr(_LOCAL, 'user', None)

def set_current_user(user):
    _LOCAL.user = user

# Bind User to a custom provider.
inject.configure(lambda binder: binder.bind_to_provider(User, get_current_user))

# Inject the current user.
def foo(user):



Apache License 2.0


Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

inject-5.2.1.tar.gz (26.0 kB view hashes)

Uploaded Source

Built Distribution

inject-5.2.1-py2.py3-none-any.whl (14.2 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page