Skip to main content

Provides a common interface to many IR measure tools

Project description

test style docs

ir_measures

New: Explore IR measures using our demo at demo.ir-measur.es!

Check out our documentation website: ir-measur.es

Provides a common interface to many IR measure tools.

Provided by the Terrier Team @ Glasgow. Find us at terrierteam/ir_measures.

Getting Started

Install via pip

pip install ir-measures

Python API

import ir_measures
from ir_measures import * # imports all supported measures, e.g., AP, nDCG, RR, P

qrels = {
    'Q0': {"D0": 0, "D1": 1},
    "Q1": {"D0": 0, "D3": 2}
}
run = {
    'Q0': {"D0": 1.2, "D1": 1.0},
    "Q1": {"D0": 2.4, "D3": 3.6}
}

# aggregated results
ir_measures.calc_aggregate([AP, nDCG, RR, nDCG@10, P(rel=2)@10], qrels, run)
# {AP: 0.75, nDCG: 0.8154648767857288, RR: 0.75, nDCG@10: 0.8154648767857288, P(rel=2)@10: 0.05}

# by query
for m in ir_measures.iter_calc([AP, nDCG, RR, nDCG@10, P(rel=2)@10], qrels, run):
    print(m)
# Metric(query_id='Q0', measure=AP, value=0.5)
# Metric(query_id='Q0', measure=RR, value=0.5)
# Metric(query_id='Q0', measure=nDCG, value=0.6309297535714575)
# Metric(query_id='Q0', measure=nDCG@10, value=0.6309297535714575)
# Metric(query_id='Q1', measure=AP, value=1.0)
# Metric(query_id='Q1', measure=RR, value=1.0)
# Metric(query_id='Q1', measure=nDCG, value=1.0)
# Metric(query_id='Q1', measure=nDCG@10, value=1.0)
# Metric(query_id='Q0', measure=P(rel=2)@10, value=0.0)
# Metric(query_id='Q1', measure=P(rel=2)@10, value=0.1)

Qrels can be provided in the following formats:

# dict of dict
qrels = {
    'Q0': {
        "D0": 0,
        "D1": 1,
    },
    "Q1": {
        "D0": 0,
        "D3": 2
    }
}

# dataframe
import pandas as pd
qrels = pd.DataFrame([
    {'query_id': "Q0", 'doc_id': "D0", 'relevance': 0},
    {'query_id': "Q0", 'doc_id': "D1", 'relevance': 1},
    {'query_id': "Q1", 'doc_id': "D0", 'relevance': 0},
    {'query_id': "Q1", 'doc_id': "D3", 'relevance': 2},
])

# any iterable of namedtuples (e.g., list, generator, etc)
qrels = [
    ir_measures.Qrel("Q0", "D0", 0),
    ir_measures.Qrel("Q0", "D1", 1),
    ir_measures.Qrel("Q1", "D0", 0),
    ir_measures.Qrel("Q1", "D3", 2),
]

# TREC-formatted qrels file
qrels = ir_measures.read_trec_qrels('qrels.txt')

# qrels from the ir_datasets package (https://ir-datasets.com/)
import ir_datasets
qrels = ir_datasets.load('trec-robust04').qrels_iter()

Runs can be provided in the following formats:

# dict of dict
run = {
    'Q0': {
        "D0": 1.2,
        "D1": 1.0,
    },
    "Q1": {
        "D0": 2.4,
        "D3": 3.6
    }
}

# dataframe
import pandas as pd
run = pd.DataFrame([
    {'query_id': "Q0", 'doc_id': "D0", 'score': 1.2},
    {'query_id': "Q0", 'doc_id': "D1", 'score': 1.0},
    {'query_id': "Q1", 'doc_id': "D0", 'score': 2.4},
    {'query_id': "Q1", 'doc_id': "D3", 'score': 3.6},
])

# any iterable of namedtuples (e.g., list, generator, etc)
run = [
    ir_measures.ScoredDoc("Q0", "D0", 1.2),
    ir_measures.ScoredDoc("Q0", "D1", 1.0),
    ir_measures.ScoredDoc("Q1", "D0", 2.4),
    ir_measures.ScoredDoc("Q1", "D3", 3.6),
]

Command Line Interface

ir_measures also functions as a command line interface, with syntax similar to trec_eval.

Example:

ir_measures /path/to/qrels /path/to/run P@10 'P(rel=2)@5 nDCG@15 Judged@10' NumQ NumRel NumRet NumRelRet
P@10    0.4382
P(rel=2)@5  0.0827
nDCG@15 0.4357
Judged@10   0.9812
NumQ    249.0000
NumRel  17412.0000
NumRet  241339.0000
NumRet(rel=1)   10272.0000

Syntax:

ir_measures qrels run measures... [-q] [-n] [-p 4]
  • qrels: a TREC-formatted QRELS file
  • run: a TREC-formatted results file
  • measures: one or more measure name strings. Note that in bash, () must be in single quotes. For simplicity, you can provide multiple meaures in a single quotation, which are split on whitespace.
  • -q: provide results for each query individually
  • -n: when used with -q, skips summary statistics
  • -p: number of decimal places to report results (default: 4)

PyTerrier API

PyTerrier uses ir_measures:

from pyterrier.measures import *
pt.Experiment(
    [bm25],
    topics,
    qrels,
    measures=[P@10, P(rel=2)@5, nDCG@15]

Documentation

Credits

  • Sean MacAvaney, University of Glasgow
  • Craig Macdonald, University of Glasgow
  • Charlie Clarke, University of Waterloo
  • Benjamin Piwowarski, CNRS
  • Harry Scells, Leipzig University

If you use this package, be sure to cite:

@inproceedings{DBLP:conf/ecir/MacAvaneyMO22a,
  author       = {Sean MacAvaney and
                  Craig Macdonald and
                  Iadh Ounis},
  title        = {Streamlining Evaluation with ir-measures},
  booktitle    = {Advances in Information Retrieval - 44th European Conference on {IR}
                  Research, {ECIR} 2022, Stavanger, Norway, April 10-14, 2022, Proceedings,
                  Part {II}},
  series       = {Lecture Notes in Computer Science},
  volume       = {13186},
  pages        = {305--310},
  publisher    = {Springer},
  year         = {2022},
  url          = {https://doi.org/10.1007/978-3-030-99739-7\_38},
  doi          = {10.1007/978-3-030-99739-7\_38}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ir_measures-0.4.3.tar.gz (51.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

ir_measures-0.4.3-py3-none-any.whl (61.3 kB view details)

Uploaded Python 3

File details

Details for the file ir_measures-0.4.3.tar.gz.

File metadata

  • Download URL: ir_measures-0.4.3.tar.gz
  • Upload date:
  • Size: 51.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for ir_measures-0.4.3.tar.gz
Algorithm Hash digest
SHA256 869a6019efefb02dda8b77ca0f68d6d57b01fe34998a46c76425b9fbb396e827
MD5 0f88f3a3e54625c059406b6eede172b4
BLAKE2b-256 81b4d931aa71a73353cf0b8446b3d7ce9ed789e7fe595778d7e061e86faea28d

See more details on using hashes here.

File details

Details for the file ir_measures-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: ir_measures-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 61.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for ir_measures-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3d8b3b5283e4a77df85f9f6c8a1c2c99a7421b78fa014ef97f2ddab3037d3dcf
MD5 53b48545ede299b112d3146dc350a215
BLAKE2b-256 766215199767ad9f1e3f793dec253ba6f662cb36e7197fc647bc844a6ecb99bf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page