Skip to main content

Package that provides scikit-learn compatible cross validators with stratification for multilabel data

Project description

This iterative-stratification project offers implementations of MultilabelStratifiedKFold, MultilabelRepeatedStratifiedKFold, and MultilabelStratifiedShuffleSplit with a base algorithm for stratifying multilabel data described in the following paper: Sechidis K., Tsoumakas G., Vlahavas I. (2011) On the Stratification of Multi-Label Data. In: Gunopulos D., Hofmann T., Malerba D., Vazirgiannis M. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2011. Lecture Notes in Computer Science, vol 6913. Springer, Berlin, Heidelberg.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for iterative-stratification, version 0.1.6
Filename, size File type Python version Upload date Hashes
Filename, size iterative_stratification-0.1.6-py3-none-any.whl (8.7 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size iterative-stratification-0.1.6.tar.gz (7.0 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page