Skip to main content

Package that provides scikit-learn compatible cross validators with stratification for multilabel data

Project description

This iterative-stratification project offers implementations of MultilabelStratifiedKFold, MultilabelRepeatedStratifiedKFold, and MultilabelStratifiedShuffleSplit with a base algorithm for stratifying multilabel data described in the following paper: Sechidis K., Tsoumakas G., Vlahavas I. (2011) On the Stratification of Multi-Label Data. In: Gunopulos D., Hofmann T., Malerba D., Vazirgiannis M. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2011. Lecture Notes in Computer Science, vol 6913. Springer, Berlin, Heidelberg.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iterative_stratification-0.1.8.tar.gz (8.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file iterative_stratification-0.1.8.tar.gz.

File metadata

File hashes

Hashes for iterative_stratification-0.1.8.tar.gz
Algorithm Hash digest
SHA256 7aa395a31cd6141152ccd8bc78edf29e66a7cfcd6c8c0cb52370ef79560e5480
MD5 436387104f2977e65e466df6dbb7a29f
BLAKE2b-256 b1a253f1ebff8989439500bd41a21ad49fb1f89ab5ab7a0d3b05dcac4525c2a8

See more details on using hashes here.

File details

Details for the file iterative_stratification-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for iterative_stratification-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 076e192e0c5ccbc38a29b01185375737159137a4acafe5c7ebeaa728ac9abdae
MD5 144e6b8654467fddc5dd068f63e6ae6d
BLAKE2b-256 115655c7e8306feb3cb8975a8472b3b841528ac34a1088816d82eaab3921817c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page