Skip to main content

Filter JSON and JSON Lines data with Python syntax.

Project description

jello

Filter JSON and JSON Lines data with Python syntax

jello is similar to jq in that it processes JSON and JSON Lines data except jello uses standard python dict and list syntax.

JSON or JSON Lines can be piped into jello (JSON Lines are automatically slurped into a list of dictionaries) and are available as the variable _. Assign the output the the variable r to print as JSON or simple lines.

For more information on the motivations for this project, see my blog post.

Install

pip3 install --upgrade jello

Usage

<JSON Data> | jello [OPTIONS] query

query can be most any valid python code as long as the result is assigned to r. _ is the sanitized JSON from STDIN presented as a python dict or list of dicts. For example:

$ cat data.json | jello 'r = _["key"]'

Options

  • -c compact print JSON output instead of pretty printing
  • -i initialize environment with a custom config file
  • -l lines output (suitable for bash array assignment)
  • -r raw output of selected keys (no quotes)
  • -n print selected null values
  • -h help
  • -v version info

Note: The lines() convenience function has been deprecated and will be removed in a future version. Use the -l option instead to generate output suitable for assignment to a bash variable or array. Use of the lines() function will generate a warning message to STDERR.

Custom Configuration File

You can use the -i option to initialize the jello environment with your own configuration file. The configuration file accepts valid python code and can be as simple as adding import statements for your favorite libraries.

The filename must be .jelloconf.py and must be located in the proper directory based on the OS platform:

  • Linux: ~/
  • Windows: %appdata%/

To simply import a module (e.g. glom) your .jelloconf.py file would look like this:

from glom import *

Then you could use glom in your jello filters:

$ jc -a | jello -i 'r = glom(_, "parsers.25.name")'

"lsblk"

Alternatively, if you wanted to initialize your jello environment to substitute glom syntax for _ your .jelloconf.py file could look like this:

def _(q, data=_):
    import glom
    return glom.glom(data, q)

Then you could use the following syntax to filter the JSON data:

$ jc -a | jello -i 'r = _("parsers.6.compatible")'

[
  "linux",
  "darwin",
  "cygwin",
  "win32",
  "aix",
  "freebsd"
]

Examples:

lambda functions and math

$ echo '{"t1":-30, "t2":-20, "t3":-10, "t4":0}' | jello '\
keys = _.keys()
vals = _.values()
cel = list(map(lambda x: (float(5)/9)*(x-32), vals))
r = dict(zip(keys, cel))'

{
  "t1": -34.44444444444444,
  "t2": -28.88888888888889,
  "t3": -23.333333333333336,
  "t4": -17.77777777777778
}

$ jc -a | jello 'r = len([entry for entry in _["parsers"] if "darwin" in entry["compatible"]])'

32

for loops

Output as JSON array

jc -a | jello '\
r = []
for entry in _["parsers"]:
  if "darwin" in entry["compatible"]:
    r.append(entry["name"])'

[
  "airport",
  "airport_s",
  "arp",
  "crontab",
  "crontab_u",
  ...
]

Output as bash array

jc -a | jello -rl '\
r = []
for entry in _["parsers"]:
  if "darwin" in entry["compatible"]:
    r.append(entry["name"])'

airport
airport_s
arp
crontab
crontab_u
...

List and Dictionary Comprehension

Output as JSON array

$ jc -a | jello 'r = [entry["name"] for entry in _["parsers"] if "darwin" in entry["compatible"]]'

[
  "airport",
  "airport_s",
  "arp",
  "crontab",
  "crontab_u",
  ...
]

Output as bash array

$ jc -a | jello -rl 'r = [entry["name"] for entry in _["parsers"] if "darwin" in entry["compatible"]]'

airport
airport_s
arp
crontab
crontab_u
...

Environment Variables

$ echo '{"login_name": "joeuser"}' | jello '\
r = True if os.getenv("LOGNAME") == _["login_name"] else False'

true

Using 3rd Party Libraries

You can import and use your favorite libraries to manipulate the data. For example, using glom:

$ jc -a | jello '\
from glom import *
r = glom(_, ("parsers", ["name"]))'

[
  "airport",
  "airport_s",
  "arp",
  "blkid",
  "crontab",
  "crontab_u",
  "csv",
  ...
]

Complex JSON Manipulation

The data from this example comes from https://programminghistorian.org/assets/jq_twitter.json

Under Grouping and Counting, Matthew describes an advanced jq filter against a sample Twitter dataset that includes JSON Lines data. There he describes the following query:

“We can now create a table of users. Let’s create a table with columns for the user id, user name, followers count, and a column of their tweet ids separated by a semicolon.”

https://programminghistorian.org/en/lessons/json-and-jq

Here is a simple solution using jello:

$ cat jq_twitter.json | jello -l '\
user_ids = set()
r = []
for tweet in _:
    user_ids.add(tweet["user"]["id"])
for user in user_ids:
    user_profile = {}
    tweet_ids = []
    for tweet in _:
        if tweet["user"]["id"] == user:
            user_profile.update({
                "user_id": user,
                "user_name": tweet["user"]["screen_name"],
                "user_followers": tweet["user"]["followers_count"]})
            tweet_ids.append(str(tweet["id"]))
    user_profile["tweet_ids"] = ";".join(tweet_ids)
    r.append(user_profile)'
...
{"user_id": 2696111005, "user_name": "EGEVER142", "user_followers": 1433, "tweet_ids": "619172303654518784"}
{"user_id": 42226593, "user_name": "shirleycolleen", "user_followers": 2114, "tweet_ids": "619172281294655488;619172179960328192"}
{"user_id": 106948003, "user_name": "MrKneeGrow", "user_followers": 172, "tweet_ids": "501064228627705857"}
{"user_id": 18270633, "user_name": "ahhthatswhy", "user_followers": 559, "tweet_ids": "501064204661850113"}
{"user_id": 14331818, "user_name": "edsu", "user_followers": 4220, "tweet_ids": "615973042443956225;618602288781860864"}
{"user_id": 2569107372, "user_name": "SlavinOleg", "user_followers": 35, "tweet_ids": "501064198973960192;501064202794971136;501064214467731457;501064215759568897;501064220121632768"}
{"user_id": 22668719, "user_name": "nodehyena", "user_followers": 294, "tweet_ids": "501064222772445187"}
...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for jello, version 0.5.0
Filename, size File type Python version Upload date Hashes
Filename, size jello-0.5.0-py3-none-any.whl (117.3 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size jello-0.5.0.tar.gz (112.7 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page