Skip to main content

Serialization for JSON, YAML and XML using typing

Project description

jetblack-serialization

Serialization of built in types for JSON, YAML and XML in Python using type annotations (read the docs).

Installation

This is a Python 3.12+ package.

The package can be installed with pip.

pip install jetblack-serialization

By default, the dependencies for YAML and XML are not installed.

To install the dependencies for XML (lxml).

pip install jetblack-serialization[xml]

To install the dependencies for YAML (PyYAML).

pip install jetblack-serialization[yaml]

To install the dependencies for all.

pip install jetblack-serialization[xml,yaml]

Overview

The package adds support for type annotations when serializing or deserializing JSON, YAML or XML.

JSON

Given a typed dictionary:

from datetime import datetime
from typing import Optional, TypedDict, Union

class Book(TypedDict, total=False):
    book_id: int
    title: str
    author: str
    publication_date: datetime
    keywords: list[str]
    phrases: list[str]
    age: Optional[Union[datetime, int]]
    pages: Optional[int]

Serializing JSON

This could be serialized to JSON as:

from stringcase import camelcase
from jetblack_serialization.json import serialize, SerializerConfig

obj: Book = {
    'author': 'Chairman Mao',
    'book_id': 42,
    'title': 'Little Red Book',
    'publication_date': datetime(1973, 1, 1, 21, 52, 13),
    'keywords': ['Revolution', 'Communism'],
    'phrases': [
        'Revolutionary wars are inevitable in class society',
        'War is the continuation of politics'
    ],
    'age': 24,
}
text = serialize(
    obj,
    Book,
    SerializerConfig(key_serializer=camelcase, pretty_print=True)
)
print(text)

giving:

{
    "bookId": 42,
    "title": "Little Red Book",
    "author": "Chairman Mao",
    "publicationDate": "1973-01-01T21:52:13.00Z",
    "keywords": ["Revolution", "Communism"],
    "phrases": ["Revolutionary wars are inevitable in class society", "War is the continuation of politics"],
    "age": 24,
    "pages": null
}

Note the fields have been camel cased, and the publication date has been turned into an ISO 8601 date.

Deserializing JSON

We can deserialize the data as follows:

from stringcase import snakecase
from jetblack_serialization.json import deserialize, SerializerConfig

dct = deserialize(
    text,
    Annotated[Book, JSONValue()],
    SerializerConfig(key_deserializer=snakecase)
)

YAML

YAML is a superset of JSON, so for serialization things are very similar.

Given a typed dictionary:

from datetime import datetime
from typing import Optional, TypedDict, Union

class Book(TypedDict, total=False):
    book_id: int
    title: str
    author: str
    publication_date: datetime
    keywords: list[str]
    phrases: list[str]
    age: Optional[Union[datetime, int]]
    pages: Optional[int]

Serializing YAML

This could be serialized to YAML as:

from stringcase import camelcase
from jetblack_serialization.yaml import serialize, SerializerConfig

obj: Book = {
    'author': 'Chairman Mao',
    'book_id': 42,
    'title': 'Little Red Book',
    'publication_date': datetime(1973, 1, 1, 21, 52, 13),
    'keywords': ['Revolution', 'Communism'],
    'phrases': [
        'Revolutionary wars are inevitable in class society',
        'War is the continuation of politics'
    ],
    'age': 24,
}
text = serialize(
    obj,
    Book,
    SerializerConfig(key_serializer=camelcase, pretty_print=True)
)
print(text)

giving:

bookId: 42
title: Little Red Book
author: Chairman Mao
publicationDate: '1973-01-01T21:52:13.00Z'
keywords:
- Revolution
- Communism
phrases:
- Revolutionary wars are inevitable in class society
- War is the continuation of politics
age: 24
pages: null

Note the fields have been camel cased, and the publication date has been turned into an ISO 8601 date.

Deserializing YAML

We can deserialize the data as follows:

from stringcase import snakecase
from jetblack_serialization.yaml import deserialize, SerializerConfig

dct = deserialize(
    text,
    Annotated[Book, JSONValue()],
    SerializerConfig(key_deserializer=snakecase)
)

XML

The XML version of the typed dictionary might look like this:

from datetime import datetime
from typing import Optional, TypedDict, Union
from typing_extensions import Annotated
from jetblack_serialization.xml import XMLEntity, XMLAttribute

class Book(TypedDict, total=False):
    book_id: Annotated[int, XMLAttribute("bookId")]
    title: str
    author: str
    publication_date: datetime
    keywords: Annotated[list[Annotated[str, XMLEntity("Keyword")]], XMLEntity("Keywords")]
    phrases: list[str]
    age: Optional[Union[datetime, int]]
    pages: Optional[int]

Note we have introduced some annotations to control the serialization. For XML we have used pascal-case to serialized the keys and snake-case for deserialization.

Serializing XML

To serialize we need to provide the containing tag Book:

from stringcase import pascalcase
from jetblack_serialization.xml import serialize, SerializerConfig

book: Book = {
    'author': 'Chairman Mao',
    'book_id': 42,
    'title': 'Little Red Book',
    'publication_date': datetime(1973, 1, 1, 21, 52, 13),
    'keywords': ['Revolution', 'Communism'],
    'phrases': [
        'Revolutionary wars are inevitable in class society',
        'War is the continuation of politics'
    ],
    'age': 24,
    'pages': None
}
text = serialize(
    book,
    Annotated[Book, XMLEntity("Book")],
    SerializerConfig(key_serializer=pascalcase)
)
print(text)

Producing:

<Book bookId="42">
    <Title>Little Red Book</Title>
    <Author>Chairman Mao</Author>
    <PublicationDate>1973-01-01T21:52:13.00Z</PublicationDate>
    <Keywords>
        <Keyword>Revolution</Keyword>
        <Keyword>Communism</Keyword>
    </Keywords>
    <Phrase>Revolutionary wars are inevitable in class society</Phrase>
    <Phrase>War is the continuation of politics</Phrase>
    <Age>24</Age>
</Book>'

The annotations are more elaborate here. However, much of the typed dictionary requires no annotation.

First we needed the outer document wrapper XMLEntity("Book").

Next we annotated the book_id to be an XMLAttribute.

Finally we annotated the two lists differently. The keywords list used a nested structure, which we indicated by giving the list a different XMLEntity tag to the list items. For the phrases we used the default in-line behaviour.

Deserializing XML

We can deserialize the XML as follows:

from stringcase import snakecase
from jetblack_serialization.xml import deserialize, SerializerConfig

dct = deserialize(
    text,
    Annotated[Book, XMLEntity("Book")],
    SerializerConfig(key_deserializer=snakecase)
)

Attributes

For JSON, attributes are typically not required. However JSONProperty(tag, JSONObject and JSONValue are provided for completeness.

Contributing

To run the tests with tox and pyenv:

VIRTUALENV_DISCOVERY=pyenv tox

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jetblack_serialization-4.0.13.tar.gz (25.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

jetblack_serialization-4.0.13-py3-none-any.whl (32.8 kB view details)

Uploaded Python 3

File details

Details for the file jetblack_serialization-4.0.13.tar.gz.

File metadata

  • Download URL: jetblack_serialization-4.0.13.tar.gz
  • Upload date:
  • Size: 25.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for jetblack_serialization-4.0.13.tar.gz
Algorithm Hash digest
SHA256 e09817f0f62a8f1e0d974dc26b6425c368bfbc71334c18d25036b7359c08e5e4
MD5 b3834917cccaeacbb7fdc3044fae5a77
BLAKE2b-256 c88b4d5f36744e2c24352a1c5af91cc0c27d1c6038314efa44b3d32773969aaf

See more details on using hashes here.

File details

Details for the file jetblack_serialization-4.0.13-py3-none-any.whl.

File metadata

File hashes

Hashes for jetblack_serialization-4.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 f34fc423743d0e8fc7afea450388b9cd03538eb8d4a91ef6ef7debd82d36a93d
MD5 824c8b6e0c60d4dd0930a0dab1dbe0ed
BLAKE2b-256 c66d26700cc4e690e0ce3a1b54ee4137d24d52e1c63568139640f06d04176f06

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page