Serialization for JSON, YAML and XML using typing
Project description
jetblack-serialization
Serialization of built in types for JSON, YAML and XML in Python using type annotations (read the docs).
Installation
This is a Python 3.12+ package.
The package can be installed with pip.
pip install jetblack-serialization
By default, the dependencies for YAML and XML are not installed.
To install the dependencies for XML
(lxml).
pip install jetblack-serialization[xml]
To install the dependencies for YAML (PyYAML).
pip install jetblack-serialization[yaml]
To install the dependencies for all.
pip install jetblack-serialization[xml,yaml]
Overview
The package adds support for type annotations when serializing or deserializing JSON, YAML or XML.
JSON
Given a typed dictionary:
from datetime import datetime
from typing import Optional, TypedDict, Union
class Book(TypedDict, total=False):
book_id: int
title: str
author: str
publication_date: datetime
keywords: list[str]
phrases: list[str]
age: Optional[Union[datetime, int]]
pages: Optional[int]
Serializing JSON
This could be serialized to JSON as:
from stringcase import camelcase
from jetblack_serialization.json import serialize, SerializerConfig
obj: Book = {
'author': 'Chairman Mao',
'book_id': 42,
'title': 'Little Red Book',
'publication_date': datetime(1973, 1, 1, 21, 52, 13),
'keywords': ['Revolution', 'Communism'],
'phrases': [
'Revolutionary wars are inevitable in class society',
'War is the continuation of politics'
],
'age': 24,
}
text = serialize(
obj,
Book,
SerializerConfig(key_serializer=camelcase, pretty_print=True)
)
print(text)
giving:
{
"bookId": 42,
"title": "Little Red Book",
"author": "Chairman Mao",
"publicationDate": "1973-01-01T21:52:13.00Z",
"keywords": ["Revolution", "Communism"],
"phrases": ["Revolutionary wars are inevitable in class society", "War is the continuation of politics"],
"age": 24,
"pages": null
}
Note the fields have been camel cased, and the publication date has been turned into an ISO 8601 date.
Deserializing JSON
We can deserialize the data as follows:
from stringcase import snakecase
from jetblack_serialization.json import deserialize, SerializerConfig
dct = deserialize(
text,
Annotated[Book, JSONValue()],
SerializerConfig(key_deserializer=snakecase)
)
YAML
YAML is a superset of JSON, so for serialization things are very similar.
Given a typed dictionary:
from datetime import datetime
from typing import Optional, TypedDict, Union
class Book(TypedDict, total=False):
book_id: int
title: str
author: str
publication_date: datetime
keywords: list[str]
phrases: list[str]
age: Optional[Union[datetime, int]]
pages: Optional[int]
Serializing YAML
This could be serialized to YAML as:
from stringcase import camelcase
from jetblack_serialization.yaml import serialize, SerializerConfig
obj: Book = {
'author': 'Chairman Mao',
'book_id': 42,
'title': 'Little Red Book',
'publication_date': datetime(1973, 1, 1, 21, 52, 13),
'keywords': ['Revolution', 'Communism'],
'phrases': [
'Revolutionary wars are inevitable in class society',
'War is the continuation of politics'
],
'age': 24,
}
text = serialize(
obj,
Book,
SerializerConfig(key_serializer=camelcase, pretty_print=True)
)
print(text)
giving:
bookId: 42
title: Little Red Book
author: Chairman Mao
publicationDate: '1973-01-01T21:52:13.00Z'
keywords:
- Revolution
- Communism
phrases:
- Revolutionary wars are inevitable in class society
- War is the continuation of politics
age: 24
pages: null
Note the fields have been camel cased, and the publication date has been turned into an ISO 8601 date.
Deserializing YAML
We can deserialize the data as follows:
from stringcase import snakecase
from jetblack_serialization.yaml import deserialize, SerializerConfig
dct = deserialize(
text,
Annotated[Book, JSONValue()],
SerializerConfig(key_deserializer=snakecase)
)
XML
The XML version of the typed dictionary might look like this:
from datetime import datetime
from typing import Optional, TypedDict, Union
from typing_extensions import Annotated
from jetblack_serialization.xml import XMLEntity, XMLAttribute
class Book(TypedDict, total=False):
book_id: Annotated[int, XMLAttribute("bookId")]
title: str
author: str
publication_date: datetime
keywords: Annotated[list[Annotated[str, XMLEntity("Keyword")]], XMLEntity("Keywords")]
phrases: list[str]
age: Optional[Union[datetime, int]]
pages: Optional[int]
Note we have introduced some annotations to control the serialization. For XML we have used pascal-case to serialized the keys and snake-case for deserialization.
Serializing XML
To serialize we need to provide the containing tag Book:
from stringcase import pascalcase
from jetblack_serialization.xml import serialize, SerializerConfig
book: Book = {
'author': 'Chairman Mao',
'book_id': 42,
'title': 'Little Red Book',
'publication_date': datetime(1973, 1, 1, 21, 52, 13),
'keywords': ['Revolution', 'Communism'],
'phrases': [
'Revolutionary wars are inevitable in class society',
'War is the continuation of politics'
],
'age': 24,
'pages': None
}
text = serialize(
book,
Annotated[Book, XMLEntity("Book")],
SerializerConfig(key_serializer=pascalcase)
)
print(text)
Producing:
<Book bookId="42">
<Title>Little Red Book</Title>
<Author>Chairman Mao</Author>
<PublicationDate>1973-01-01T21:52:13.00Z</PublicationDate>
<Keywords>
<Keyword>Revolution</Keyword>
<Keyword>Communism</Keyword>
</Keywords>
<Phrase>Revolutionary wars are inevitable in class society</Phrase>
<Phrase>War is the continuation of politics</Phrase>
<Age>24</Age>
</Book>'
The annotations are more elaborate here. However, much of the typed dictionary requires no annotation.
First we needed the outer document wrapper XMLEntity("Book").
Next we annotated the book_id to be an XMLAttribute.
Finally we annotated the two lists differently. The keywords list used
a nested structure, which we indicated by giving the list a different
XMLEntity tag to the list items. For the phrases we used the default
in-line behaviour.
Deserializing XML
We can deserialize the XML as follows:
from stringcase import snakecase
from jetblack_serialization.xml import deserialize, SerializerConfig
dct = deserialize(
text,
Annotated[Book, XMLEntity("Book")],
SerializerConfig(key_deserializer=snakecase)
)
Attributes
For JSON, attributes are typically not required. However
JSONProperty(tag, JSONObject and JSONValue are provided for
completeness.
Contributing
To run the tests with tox and pyenv:
VIRTUALENV_DISCOVERY=pyenv tox
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file jetblack_serialization-4.0.13.tar.gz.
File metadata
- Download URL: jetblack_serialization-4.0.13.tar.gz
- Upload date:
- Size: 25.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
e09817f0f62a8f1e0d974dc26b6425c368bfbc71334c18d25036b7359c08e5e4
|
|
| MD5 |
b3834917cccaeacbb7fdc3044fae5a77
|
|
| BLAKE2b-256 |
c88b4d5f36744e2c24352a1c5af91cc0c27d1c6038314efa44b3d32773969aaf
|
File details
Details for the file jetblack_serialization-4.0.13-py3-none-any.whl.
File metadata
- Download URL: jetblack_serialization-4.0.13-py3-none-any.whl
- Upload date:
- Size: 32.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f34fc423743d0e8fc7afea450388b9cd03538eb8d4a91ef6ef7debd82d36a93d
|
|
| MD5 |
824c8b6e0c60d4dd0930a0dab1dbe0ed
|
|
| BLAKE2b-256 |
c66d26700cc4e690e0ce3a1b54ee4137d24d52e1c63568139640f06d04176f06
|