This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Generate and load Pandas data frames based on JSON Table Schema descriptors.

Version v0.2 contains breaking changes:
  • removed Storage(prefix=) argument (was a stub)
  • renamed Storage(tables=) to Storage(dataframes=)
  • renamed Storage.tables to Storage.buckets
  • changed Storage.read to read into memory
  • added Storage.iter to yield row by row

Getting Started

Installation

$ pip install datapackage
$ pip install jsontableschema-pandas

Example

You can easily load resources from a data package as Pandas data frames by simply using datapackage.push_datapackage function:

>>> import datapackage

>>> data_url = 'http://data.okfn.org/data/core/country-list/datapackage.json'
>>> storage = datapackage.push_datapackage(data_url, 'pandas')

>>> storage.buckets
['data___data']

>>> type(storage['data___data'])
<class 'pandas.core.frame.DataFrame'>

>>> storage['data___data'].head()
             Name Code
0     Afghanistan   AF
1   Åland Islands   AX
2         Albania   AL
3         Algeria   DZ
4  American Samoa   AS

Also it is possible to pull your existing data frame into a data package:

>>> datapackage.pull_datapackage('/tmp/datapackage.json', 'country_list', 'pandas', tables={
...     'data': storage['data___data'],
... })
Storage

Storage

Package implements Tabular Storage interface.

We can get storage this way:

>>> from jsontableschema_pandas import Storage

>>> storage = Storage()

Storage works as a container for Pandas data frames. You can define new data frame inside storage using storage.create method:

>>> storage.create('data', {
...     'primaryKey': 'id',
...     'fields': [
...         {'name': 'id', 'type': 'integer'},
...         {'name': 'comment', 'type': 'string'},
...     ]
... })

>>> storage.buckets
['data']

>>> storage['data'].shape
(0, 0)

Use storage.write to populate data frame with data:

>>> storage.write('data', [(1, 'a'), (2, 'b')])

>>> storage['data']
id comment
1        a
2        b

Also you can use tabulator to populate data frame from external data file:

>>> import tabulator

>>> with tabulator.Stream('data/comments.csv', headers=1) as stream:
...     storage.write('data', stream)

>>> storage['data']
id comment
1        a
2        b
1     good

As you see, subsequent writes simply appends new data on top of existing ones.

Contributing

Please read the contribution guideline:

How to Contribute

Thanks!

Release History

Release History

0.2.0

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.4

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
jsontableschema_pandas-0.2.0-py2.py3-none-any.whl (9.3 kB) Copy SHA256 Checksum SHA256 py2.py3 Wheel Oct 26, 2016
jsontableschema-pandas-0.2.0.tar.gz (8.7 kB) Copy SHA256 Checksum SHA256 Source Oct 26, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting