Skip to main content

JUelich NeuroImaging FEature extractoR

Project description

Junifer logo

junifer - JUelich NeuroImaging FEature extractoR

PyPI PyPI - Python Version PyPI - Wheel GitHub Codecov

About

junifer is a data handling and feature extraction library targeted towards neuroimaging data specifically functional MRI data.

It is curently being developed and maintained at the Applied Machine Learning group at Forschungszentrum Juelich, Germany. Although the library is designed for people working at Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), it is designed to be as modular as possible thus enabling others to extend it easily.

The documentation is available at https://juaml.github.io/junifer.

Repository Organization

  • docs: Documentation, built using sphinx.
  • examples: Examples, using sphinx-gallery. File names of examples that create visual output must start with plot_, otherwise, with run_.
  • junifer: Main library directory.
    • api: User API module.
    • configs: Module for pre-defined configs for most used computing clusters.
    • data: Module that handles data required for the library to work (e.g. parcels, coordinates).
    • datagrabber: DataGrabber module.
    • datareader: DataReader module.
    • markers: Markers module.
    • pipeline: Pipeline module.
    • preprocess: Preprocessing module.
    • storage: Storage module.
    • testing: Testing components module.
    • utils: Utilities module (e.g. logging)

Installation

Use pip to install from PyPI like so:

pip install junifer

Citation

If you use junifer in a scientific publication, we would appreciate if you cite our work. Currently, we do not have a publication, so feel free to use the project URL.

Funding

We thank the Helmholtz Imaging Platform and SMHB for supporting development of Junifer. (The funding sources had no role in the design, implementation and evaluation of the pipeline.)

Contribution

Contributions are welcome and greatly appreciated. Please read the guidelines to get started.

License

junifer is released under the AGPL v3 license:

junifer, FZJuelich AML neuroimaging feature extraction library. Copyright (C) 2022, authors of junifer.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

junifer-0.0.2.dev290.tar.gz (659.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

junifer-0.0.2.dev290-py3-none-any.whl (524.2 kB view details)

Uploaded Python 3

File details

Details for the file junifer-0.0.2.dev290.tar.gz.

File metadata

  • Download URL: junifer-0.0.2.dev290.tar.gz
  • Upload date:
  • Size: 659.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for junifer-0.0.2.dev290.tar.gz
Algorithm Hash digest
SHA256 0021af983effe1c9099a461548f321552be8067467f3c4e1cceb8f80c78c2b7e
MD5 a51bd0bd86adaf220105da51c8cb9617
BLAKE2b-256 6d8ae8c748b9dbe2ad16138399b4319ff392a7dde95a69552985104030e9f77d

See more details on using hashes here.

File details

Details for the file junifer-0.0.2.dev290-py3-none-any.whl.

File metadata

  • Download URL: junifer-0.0.2.dev290-py3-none-any.whl
  • Upload date:
  • Size: 524.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for junifer-0.0.2.dev290-py3-none-any.whl
Algorithm Hash digest
SHA256 f80add0cf6aaacfaa5c26e1db9fa072f2f1ae6ea86197b48d8498c0cc71ffe09
MD5 4f5896069b723ee7f3e0a278e63d16a4
BLAKE2b-256 62f62ffcae9921d386fd7b0389cab50ccb5e062ed10d2d2b7372bdc0c79379e9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page