This library is used to read or write data in Postgres, MongoDB (Only read) or Google Sheets
Project description
Overview
Justogres is a connector to comunicate pandas.DataFrame objects with postgres database
Quick start
for more details review documentation
Install or upgrade package
install:
pip install justogres
upgrade:
pip install justogres --upgrade
Init module
from justogres import clientPsql
psql = clientPsql(
host = "<your host>",
user = "<your user>",
password = "<your password>",
db_name = "<your database name>",
)
Insert data into postgres
import pandas as pd
example_df = pd.DataFrame(data=example_data)
psql.insert(
example_df,
table_name=<your table name>, #if doesn't exist table, will be created
schema=<your schema name>, #should be created previously
#optional
chunksize=<your chunksize to load (default: 1000)>,
column_types={<name_column_df>:<data_type postgres>})# if not declare column types, will be assigned automatically
Read table of postgres
we have 2 ways to read DB, both return pandas.DataFrame object but its main difference is the type of data that is assigned to the columns of the dataframe
1. use exec_query() -> all columns are defines as object (string datatype in pandas)
query_example_to_read="""SELECT *
FROM schema_name.table_name;"""
df = psql.exec_query(
query_example_to_read,
#optional
chunksize=<your chunksize to load (default: 1000)>
)
2. use read_with_pandas() -> columns are defined with datatype declare for each column into DB
query_example_to_read="""SELECT *
FROM schema_name.table_name;"""
df = psql.read_with_pandas(
query_example_to_read,
#optional
**kwargs=<all attributes we can use with pandas.read_sql()>
)
for more info of pandas.read_sql()
Execute sql queries
this method doesn't return anything
query_example="""DELETE
FROM schema_name.table_name
WHERE column_name='value';"""
psql.exec_query(
query_example,
#optional
chunksize=<your chunksize to load (default: 1000)>
)
SpreadSheets Module
Write DataFrame in Worksheet
from justogres import SpreadSheets
spread_sheet_client = SpreadSheets("credentials.json")
spreadsheet_id = '1SVZDYBw17S1XeRNBW08YA7i29mOfFlGmmF6EWKH84bk'
worksheet_name = 'Result'
spread_sheet_client.append_dataframe(data_frame ,spreadsheet_id, worksheet_name)
Read DataFrame in Worksheet
from justogres import SpreadSheets
spread_sheet_client = SpreadSheets("credentials.json")
spreadsheet_id = '1SVZDYBw17S1XeRNBW08YA7i29mOfFlGmmF6EWKH84bk'
worksheet_name = 'Result'
spread_sheet_client.worksheet_to_dataframe(spreadsheet_id, worksheet_name)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file justogres-3.0.11.tar.gz.
File metadata
- Download URL: justogres-3.0.11.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.6
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3a2e8dc821346939968b002eaf3f02467201f6300c0472313bfcd50e858d9905
|
|
| MD5 |
0e50e674738aa09bfc5b0f53d6d24106
|
|
| BLAKE2b-256 |
edf5cf6f7589a13d357a4c6b03545f8257184e4d8610799127e9016109cb2e14
|
File details
Details for the file justogres-3.0.11-py3-none-any.whl.
File metadata
- Download URL: justogres-3.0.11-py3-none-any.whl
- Upload date:
- Size: 7.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.6
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
790cc0874dd171221e181da0a1b67a81b5656f0c24e25462cbae4d1c6816df9c
|
|
| MD5 |
d5712e4dda7489542c45d319d2e632fa
|
|
| BLAKE2b-256 |
073435245d705707711bbfd9c845a942a9e9d0982f02ffda62788976c49b377a
|