Skip to main content

Kedro-Viz helps visualise Kedro data and analytics pipelines

Project description


Kedro-Viz Pipeline Visualisation

Data Science Pipelines. Beautifully Designed
Live Demo:

CircleCI Documentation Python Version PyPI version Downloads npm version License code style: prettier Slack Organisation


Kedro-Viz is an interactive development tool for building data science pipelines with Kedro. Kedro-Viz also allows users to view and compare different runs in the Kedro project.


  • ✨ Complete visualisation of a Kedro project and its pipelines
  • 🎨 Supports light & dark themes out of the box
  • 🚀 Scales to big pipelines with hundreds of nodes
  • 🔎 Highly interactive, filterable and searchable
  • 🔬 Focus mode for modular pipeline visualisation
  • 📊 Rich metadata side panel to display parameters, plots, etc.
  • 📊 Supports all types of Plotly charts
  • ♻️ Autoreload on code change
  • 🧪 Supports tracking and comparing runs in a Kedro project
  • 🎩 Many more to come


There are two ways you can use Kedro-Viz:

  • As a Kedro plugin (the most common way).

    To install Kedro-Viz as a Kedro plugin:

    pip install kedro-viz
  • As a standalone React component (for embedding Kedro-Viz in your web application).

    To install the standalone React component:

    npm install @quantumblack/kedro-viz


Compatibility with Kedro and Kedro-datasets

Ensure your Kedro, Kedro-Viz and Kedro-datasets versions are supported by referencing the following table:

Python Version Last Supported
Kedro Kedro-Viz Kedro-datasets
3.6 0.17.7 4.1.1 -
3.7 0.18.14 6.7.0 1.8.0
3.8 Latest 7.1.0 1.8.0
>= 3.9 Latest Latest Latest

CLI Usage

To launch Kedro-Viz from the command line as a Kedro plugin, use the following command from the root folder of your Kedro project:

kedro viz run

A browser tab opens automatically to serve the visualisation at

Kedro-Viz also supports the following additional arguments on the command line:

Usage: kedro viz run [OPTIONS]

  Visualise a Kedro pipeline using Kedro-Viz.

  --host TEXT               Host that viz will listen to. Defaults to

  --port INTEGER            TCP port that viz will listen to. Defaults to

  --browser / --no-browser  Whether to open viz interface in the default
                            browser or not. Browser will only be opened if
                            host is localhost. Defaults to True.

  --load-file FILE          Path to load Kedro-Viz data from a directory
  --save-file FILE          Path to save Kedro-Viz data to a directory 
  --pipeline TEXT           Name of the registered pipeline to visualise. If not
                            set, the default pipeline is visualised

  -e, --env TEXT            Kedro configuration environment. If not specified,
                            catalog config in `local` will be used

  --autoreload              Autoreload viz server when a Python or YAML file change in
                            the Kedro project

  --include-hooks           A flag to include all registered hooks in your
                            Kedro Project

  --params TEXT             Specify extra parameters that you want to pass to
                            the context initializer. Items must be separated
                            by comma, keys - by colon, example:
                            param1:value1,param2:value2. Each parameter is
                            split by the first comma, so parameter values are
                            allowed to contain colons, parameter keys are not.
                            To pass a nested dictionary as parameter, separate
                            keys by '.', example: param_group.param1:value1.

  -h, --help                Show this message and exit.

To deploy Kedro-Viz from the command line as a Kedro plugin, use the following command from the root folder of your Kedro project:

kedro viz deploy
Usage: kedro viz deploy [OPTIONS]

  Deploy and host Kedro Viz on AWS S3.

  --platform TEXT     Supported Cloud Platforms like ('aws', 'azure', 'gcp')
                      to host Kedro Viz  [required]
  --endpoint TEXT     Static Website hosted endpoint.(eg., For AWS - http://<b
  --bucket-name TEXT  Bucket name where Kedro Viz will be hosted  [required]
  --include-hooks     A flag to include all registered hooks in your Kedro
  -h, --help          Show this message and exit.

To create a build directory of your local Kedro-Viz instance with static data from the command line, use the following command from the root folder of your Kedro project:

kedro viz build
Usage: kedro viz build [OPTIONS]

  Create build directory of local Kedro Viz instance with Kedro project data

  --include-hooks  A flag to include all registered hooks in your Kedro
  -h, --help       Show this message and exit.

Experiment Tracking usage

To enable experiment tracking in Kedro-Viz, you need to add the Kedro-Viz SQLiteStore to your Kedro project.

This can be done by adding the below code to in the src folder of your Kedro project.

from kedro_viz.integrations.kedro.sqlite_store import SQLiteStore
from pathlib import Path
SESSION_STORE_ARGS = {"path": str(Path(__file__).parents[2] / "data")}

Once the above set-up is complete, tracking datasets can be used to track relevant data for Kedro runs. More information on how to use tracking datasets can be found in the experiment tracking documentation


  • Experiment Tracking is only available for Kedro-Viz >= 4.0.2 and Kedro >= 0.17.5
  • Prior to Kedro 0.17.6, when using tracking datasets, you will have to explicitly mark the datasets as versioned for it to show up properly in Kedro-Viz experiment tracking tab. From Kedro >= 0.17.6, this is done automatically:
  type: tracking.MetricsDataset
  filepath: ${base_location}/09_tracking/linear_score.json
  versioned: true

Standalone React component usage

To use Kedro-Viz as a standalone React component, you can follow the example below. However, please note that Kedro-Viz does not support server-side rendering (SSR). If you're using Next.js or another SSR framework, you should be aware of this limitation.

import KedroViz from '@quantumblack/kedro-viz';
import '@quantumblack/kedro-viz/lib/styles/styles.min.css';

const MyApp = () => <KedroViz data={json} />;

To use with NextJS:

import '@quantumblack/kedro-viz/lib/styles/styles.min.css';
import dynamic from 'next/dynamic';

const NoSSRKedro = dynamic(() => import('@quantumblack/kedro-viz'), {
  ssr: false,

const MyApp = () => <NoSSRKedro data={json} />;

The JSON can be obtained by running:

kedro viz run --save-file=filename

We also recommend wrapping the Kedro-Viz component with a parent HTML/JSX element that has a specified height (as seen in the above example) in order for Kedro-Viz to be styled properly.

Our documentation contains additional examples on how to visualise with Kedro-Viz.

Feature Flags

Kedro-Viz uses features flags to roll out some experimental features. The following flags are currently in use:

Flag Description
sizewarning From release v3.9.1. Show a warning before rendering very large graphs (default true)
expandAllPipelines From release v4.3.2. Expand all modular pipelines on first load (default false)

To enable or disable a flag, click on the settings icon in the toolbar and toggle the flag on/off.

Kedro-Viz also logs a message in your browser's developer console to show the available flags and their values as currently set on your machine.


Kedro-Viz is maintained by the Kedro team and a number of contributors from across the world.


If you want to contribute to Kedro-Viz, please check out our contributing guide.


Kedro-Viz is licensed under the Apache 2.0 License.


If you're an academic, Kedro-Viz can also help you, for example, as a tool to visualise how your publication's pipeline is structured. Find our citation reference on Zenodo.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kedro-viz-9.1.0.tar.gz (2.5 MB view hashes)

Uploaded Source

Built Distribution

kedro_viz-9.1.0-py3-none-any.whl (2.6 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page