Skip to main content

Keras Models Hub

Project description

Keras Models Hub

PyPI - Downloads

This repo aims at providing both reusable Keras Models and pre-trained models, which could easily integrated into your projects.


pip install keras-models

If you will using the NLP models, you need run one more command:

python -m spacy download xx_ent_wiki_sm

Usage Guide


import kearasmodels


Reusable Models




from keras_models.models import CNN

# fake data
X = np.random.normal(0, 1.0, size=500 * 100 * 100 * 3).reshape(500, 100, 100, 3)
w1 = np.random.normal(0, 1.0, size=100)
w2 = np.random.normal(0, 1.0, size=3)
Y =, w2), w1), w1) + np.random.randint(1)

# initialize & train model
model = CNN(input_shape=X.shape[1:], filters=[32, 64], kernel_size=(2, 2), pool_size=(3, 3), padding='same', r_dropout=0.25, num_classes=1)
model.compile(optimizer='adam', loss=mean_squared_error, metrics=['mae', 'mse'])
model.summary(), Y, batch_size=16, epochs=100, validation_split=0.1)



Pre-trained Models


This model is forked from GKalliatakis/Keras-VGG16-places365 and CSAILVision/places365

from keras_models.models.pretrained import vgg16_places365
labels = vgg16_places365.predict(['your_image_file_pathname.jpg', 'another.jpg'], n_top=3)

# Example Result: labels = [['cafeteria', 'food_court', 'restaurant_patio'], ['beach', 'sand']]


  • LinearModel
  • DNN
  • WideDeep
  • TextCNN
  • TextDNN
  • SkipGram
  • ResNet
  • VGG16_Places365 [pre-trained]
  • working on more models



Cheng H T, Koc L, Harmsen J, et al. 
Wide & deep learning for recommender systems[C]
Proceedings of the 1st workshop on deep learning for recommender systems. ACM, 2016: 7-10.


Kim Y. 
Convolutional neural networks for sentence classification[J]. 
arXiv preprint arXiv:1408.5882, 2014.


Mikolov T, Chen K, Corrado G, et al. 
Efficient estimation of word representations in vector space[J]. 
arXiv preprint arXiv:1301.3781, 2013.


Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A.
Places: A 10 million Image Database for Scene Recognition
IEEE Transactions on Pattern Analysis and Machine Intelligence


He K, Zhang X, Ren S, et al. 
Deep residual learning for image recognition[C]
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.


Please submit PR if you want to contribute, or submit issues for new model requirements.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for keras-models, version 0.0.7
Filename, size File type Python version Upload date Hashes
Filename, size keras_models-0.0.7-py3-none-any.whl (18.6 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size keras-models-0.0.7.tar.gz (12.5 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page