Skip to main content

A wrapper layer for stacking layers horizontally

Project description

Travis Coverage PyPI

A wrapper layer for stacking layers horizontally.

Install

pip install keras-multi-head

Usage

Duplicate Layers

The layer will be duplicated if only a single layer is provided. The layer_num argument controls how many layers will be duplicated eventually.

import keras
from keras_multi_head import MultiHead


model = keras.models.Sequential()
model.add(keras.layers.Embedding(input_dim=100, output_dim=20, name='Embedding'))
model.add(MultiHead(keras.layers.LSTM(units=32), layer_num=5, name='Multi-LSTMs'))
model.add(keras.layers.Flatten(name='Flatten'))
model.add(keras.layers.Dense(units=4, activation='softmax', name='Dense'))
model.build()
model.summary()

Use Multiple-Layers

The first argument could also be a list of layers with different configurations, however, they must have the same output shapes.

import keras
from keras_multi_head import MultiHead


model = keras.models.Sequential()
model.add(keras.layers.Embedding(input_dim=100, output_dim=20, name='Embedding'))
model.add(MultiHead([
    keras.layers.Conv1D(filters=32, kernel_size=3, padding='same'),
    keras.layers.Conv1D(filters=32, kernel_size=5, padding='same'),
    keras.layers.Conv1D(filters=32, kernel_size=7, padding='same'),
], name='Multi-CNNs'))
model.build()
model.summary()

Linear Transformation

The input data will be mapped to different values of the same shape for each layer when hidden_dim is given.

Regularization

The regularization is used when you expect to extract different features from the parallel layers. You can customize the indices of weights in the layers, the intervals represent the parts of the weights and the factor of the regularization.

For example, the bidirectional LSTM layer has 6 weights by default, and the first 3s belong to the forward layer. The 2nd weight (recurrent kernel) in the forward layer controls the computation of gates for recurrent connections. The kernel for computing cell states lays in units x 2 to units x 3 of the recurrent kernel. We can used the regularization for the kernels:

import keras
from keras_multi_head import MultiHead


model = keras.models.Sequential()
model.add(keras.layers.Embedding(input_dim=5, output_dim=3, name='Embed'))
model.add(MultiHead(
    layer=keras.layers.Bidirectional(keras.layers.LSTM(units=16), name='LSTM'),
    layer_num=5,
    reg_index=[1, 4],
    reg_slice=(slice(None, None), slice(32, 48)),
    reg_factor=0.1,
    name='Multi-Head-Attention',
))
model.add(keras.layers.Flatten(name='Flatten'))
model.add(keras.layers.Dense(units=2, activation='softmax', name='Dense'))
model.build()
  • reg_index: The indices of layer.get_weights(), a single integer or a list of integers.
  • reg_slice: slices or a tuple of slices or a list of the previous choices. If multiple indices are provided in reg_index and reg_slice is not a list, then reg_slice is assumed to be equal for all the indices. The whole array will be used if you leave this argument to None.
  • reg_factor: The factor of the regularization, a float or a list of floats.

Multi-Head Attention

A more specific multi-head layer is provided (since the general one is harder to use). The layer uses scaled dot product attention layers as its sub-layers and only head_num is required:

import keras
from keras_multi_head import MultiHeadAttention

input_layer = keras.layers.Input(
    shape=(2, 3),
    name='Input',
)
att_layer = MultiHeadAttention(
    head_num=3,
    name='Multi-Head',
)(input_layer)
model = keras.models.Model(inputs=input_layer, outputs=att_layer)
model.compile(
    optimizer='adam',
    loss='mse',
    metrics={},
)
model.summary()

The shapes of input and output tensors would be the same if only one layer is presented as input. The input layers will be considered as query, key and value when a list is given:

import keras
from keras_multi_head import MultiHeadAttention

input_query = keras.layers.Input(
    shape=(2, 3),
    name='Input-Q',
)
input_key = keras.layers.Input(
    shape=(4, 5),
    name='Input-K',
)
input_value = keras.layers.Input(
    shape=(4, 6),
    name='Input-V',
)
att_layer = MultiHeadAttention(
    head_num=3,
    name='Multi-Head',
)([input_query, input_key, input_value])
model = keras.models.Model(inputs=input_layer, outputs=att_layer)
model.compile(
    optimizer='adam',
    loss='mse',
    metrics={},
)
model.summary()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
keras-multi-head-0.14.0.tar.gz (7.2 kB) Copy SHA256 hash SHA256 Source None Nov 13, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page