Skip to main content

Stencil computations in JAX.

Project description

Differentiable Stencil computations in JAX

Installation |Description |Quick example |More Examples |Benchmarking

Tests pyver codestyle Downloads Open In Colab codecov DOI

๐Ÿ› ๏ธ Installation

pip install kernex

๐Ÿ“– Description

Kernex extends jax.vmap/jax.lax.map/jax.pmap with kmap and jax.lax.scan with kscan for general stencil computations.

โฉ Quick Example

kmap kscan
import kernex as kex
import jax.numpy as jnp

@kex.kmap(kernel_size=(3,))
def sum_all(x):
    return jnp.sum(x)

x = jnp.array([1,2,3,4,5])
print(sum_all(x))
# [ 6  9 12]
import kernex as kex 
import jax.numpy as jnp

@kex.kscan(kernel_size=(3,))
def sum_all(x):
return jnp.sum(x)

x = jnp.array([1,2,3,4,5])
print(sum_all(x))
# [ 6 13 22]
`jax.vmap` is used to sum each window content. `lax.scan` is used to update the array and the window sum is calculated sequentially. the first three rows represents the three sequential steps used to get the solution in the last row.

๐Ÿ”ข More examples

1๏ธโƒฃ Convolution operation
import jax
import jax.numpy as jnp
import kernex as kex

@jax.jit
@kex.kmap(
    kernel_size= (3,3,3),
    padding = ('valid','same','same'))
def kernex_conv2d(x,w):
    # JAX channel first conv2d with 3x3x3 kernel_size
    return jnp.sum(x*w)
2๏ธโƒฃ Laplacian operation
# see also
# https://numba.pydata.org/numba-doc/latest/user/stencil.html#basic-usage
import jax
import jax.numpy as jnp
import kernex as kex

@kex.kmap(
    kernel_size=(3,3),
    padding= 'valid',
    relative=True) # `relative`= True enables relative indexing
def laplacian(x):
    return ( 0*x[1,-1]  + 1*x[1,0]   + 0*x[1,1] +
             1*x[0,-1]  +-4*x[0,0]   + 1*x[0,1] +
             0*x[-1,-1] + 1*x[-1,0]  + 0*x[-1,1] )

print(laplacian(jnp.ones([10,10])))
# [[0., 0., 0., 0., 0., 0., 0., 0.],
#  [0., 0., 0., 0., 0., 0., 0., 0.],
#  [0., 0., 0., 0., 0., 0., 0., 0.],
#  [0., 0., 0., 0., 0., 0., 0., 0.],
#  [0., 0., 0., 0., 0., 0., 0., 0.],
#  [0., 0., 0., 0., 0., 0., 0., 0.],
#  [0., 0., 0., 0., 0., 0., 0., 0.],
#  [0., 0., 0., 0., 0., 0., 0., 0.]]
3๏ธโƒฃ Get Patches of an array
import jax
import jax.numpy as jnp
import kernex as kex

@kex.kmap(kernel_size=(3,3),relative=True)
def identity(x):
    # similar to numba.stencil
    # this function returns the top left cell in the padded/unpadded kernel view
    # or center cell if `relative`=True
    return x[0,0]

# unlike numba.stencil , vector output is allowed in kernex
# this function is similar to
# `jax.lax.conv_general_dilated_patches(x,(3,),(1,),padding='same')`
@jax.jit
@kex.kmap(kernel_size=(3,3),padding='same')
def get_3x3_patches(x):
    # returns 5x5x3x3 array
    return x

mat = jnp.arange(1,26).reshape(5,5)
print(mat)
# [[ 1  2  3  4  5]
#  [ 6  7  8  9 10]
#  [11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]]


# get the view at array index = (0,0)
print(get_3x3_patches(mat)[0,0])
# [[0 0 0]
#  [0 1 2]
#  [0 6 7]]
4๏ธโƒฃ Linear convection
Problem setup Stencil view
import jax
import jax.numpy as jnp
import kernex as kex
import matplotlib.pyplot as plt

# see https://nbviewer.org/github/barbagroup/CFDPython/blob/master/lessons/01_Step_1.ipynb

tmax,xmax = 0.5,2.0
nt,nx = 151,51
dt,dx = tmax/(nt-1) , xmax/(nx-1)
u = jnp.ones([nt,nx])
c = 0.5

# kscan moves sequentially in row-major order and updates in-place using lax.scan.

F = kernex.kscan(
        kernel_size = (3,3),
        padding = ((1,1),(1,1)),
        # n for time axis , i for spatial axis (optional naming)
        named_axis={0:'n',1:'i'},  
        relative=True
    )


# boundary condtion as a function
def bc(u):
    return 1

# initial condtion as a function
def ic1(u):
    return 1

def ic2(u):
    return 2

def linear_convection(u):
    return ( u['i','n-1'] - (c*dt/dx) * (u['i','n-1'] - u['i-1','n-1']) )


F[:,0]  = F[:,-1] = bc # assign 1 for left and right boundary for all t

# square wave initial condition
F[:,:int((nx-1)/4)+1] = F[:,int((nx-1)/2):] = ic1
F[0:1, int((nx-1)/4)+1 : int((nx-1)/2)] = ic2

# assign linear convection function for
# interior spatial location [1:-1]
# and start from t>0  [1:]
F[1:,1:-1] = linear_convection

kx_solution = F(jnp.array(u))

plt.figure(figsize=(20,7))
for line in kx_solution[::20]:
    plt.plot(jnp.linspace(0,xmax,nx),line)
5๏ธโƒฃ Gaussian blur
import jax
import jax.numpy as jnp
import kernex as kex

def gaussian_blur(image, sigma, kernel_size):
    x = jnp.linspace(-(kernel_size - 1) / 2.0, (kernel_size- 1) / 2.0, kernel_size)
    w = jnp.exp(-0.5 * jnp.square(x) * jax.lax.rsqrt(sigma))
    w = jnp.outer(w, w)
    w = w / w.sum()

    @kex.kmap(kernel_size=(kernel_size, kernel_size), padding="same")
    def conv(x):
        return jnp.sum(x * w)

    return conv(image)
6๏ธโƒฃ Depthwise convolution
import jax
import jax.numpy as jnp
import kernex as kex

@jax.jit
@jax.vmap
@kex.kmap(
    kernel_size= (3,3),
    padding = ('same','same'))
def kernex_depthwise_conv2d(x,w): 
    return jnp.sum(x*w)

h,w,c = 5,5,2
k=3

x = jnp.arange(1,h*w*c+1).reshape(c,h,w)
w = jnp.arange(1,k*k*c+1).reshape(c,k,k)
print(kernex_depthwise_conv2d(x,w))
7๏ธโƒฃ Average pooling 2D
@jax.vmap # vectorize over the channel dimension
@kex.kmap(kernel_size=(3,3), strides=(2,2))
def avgpool_2d(x):
    # define the kernel for the Average pool operation over the spatial dimensions
    return jnp.mean(x)
8๏ธโƒฃ Runge-Kutta integration
# lets solve dydt = y, where y0 = 1 and y(t)=e^t
# using Runge-Kutta 4th order method
# f(t,y) = y
import jax.numpy as jnp
import matplotlib.pyplot as plt
import kernex as kex


t = jnp.linspace(0, 1, 5)
y = jnp.zeros(5)
x = jnp.stack([y, t], axis=0)
dt = t[1] - t[0]  # 0.1
f = lambda tn, yn: yn


def ic(x):
    """ initial condition y0 = 1 """
    return 1.


def rk4(x):
    """ runge kutta 4th order integration step """
    # โ”Œโ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”      โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”
    # โ”‚ y0 โ”‚*y1*โ”‚ y2 โ”‚      โ”‚[0,-1]โ”‚[0, 0]โ”‚[0, 1]โ”‚
    # โ”œโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ค ==>  โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ค
    # โ”‚ t0 โ”‚ t1 โ”‚ t2 โ”‚      โ”‚[1,-1]โ”‚[1, 0]โ”‚[1, 1]โ”‚
    # โ””โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”˜      โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”˜
    t0 = x[1, -1]
    y0 = x[0, -1]
    k1 = dt * f(t0, y0)
    k2 = dt * f(t0 + dt / 2, y0 + 1 / 2 * k1)
    k3 = dt * f(t0 + dt / 2, y0 + 1 / 2 * k2)
    k4 = dt * f(t0 + dt, y0 + k3)
    yn_1 = y0 + 1 / 6 * (k1 + 2 * k2 + 2 * k3 + k4)
    return yn_1


F = kex.kscan(kernel_size=(2, 3), relative=True, padding=((0, 1)))  # kernel size = 3

F[0:1, 1:] = rk4
F[0, 0] = ic
# compile the solver
solver = jax.jit(F.__call__)
y = solver(x)[0, :]

plt.plot(t, y, '-o', label='rk4')
plt.plot(t, jnp.exp(t), '-o', label='analytical')
plt.legend()

img

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kernex-0.2.1.tar.gz (27.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

kernex-0.2.1-py3-none-any.whl (30.8 kB view details)

Uploaded Python 3

File details

Details for the file kernex-0.2.1.tar.gz.

File metadata

  • Download URL: kernex-0.2.1.tar.gz
  • Upload date:
  • Size: 27.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for kernex-0.2.1.tar.gz
Algorithm Hash digest
SHA256 102814a1f35879b1b6f57f2c113768266c566e2e2eed9dc96d4c25a90d5fbed7
MD5 3becf737d44ec8eedac28ecca278a711
BLAKE2b-256 a0de8a338586754fe77efef4d45d2adeee1a8389b433a8b03fee8ba6bf3a04e6

See more details on using hashes here.

File details

Details for the file kernex-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: kernex-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 30.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for kernex-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5f02f70209765f4c6c01ef9ee80f5d739ee6cc0dda31a5f3a603a53c8081a53d
MD5 5f182615295b19c8d482826e2721384e
BLAKE2b-256 47ff108214af06b6b1259bdd66a7ccb49e370395c648cd2fbfe7872f705d9e40

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page