Skip to main content

A Python library for estimating kidney failure risk using the KFRE model developed by Tangri et al.

Project description


PyPI Downloads License: MIT Zenodo

kfre is a Python library designed to estimate the risk of chronic kidney disease (CKD) progression using the Kidney Failure Risk Equation (KFRE) developed by Tangri et al. It provides risk assessments over two distinct timelines: 2 years and 5 years. The library is tailored for healthcare professionals and researchers, enabling precise CKD risk predictions based on patient data. It supports predictions for both males and females and includes adjustments for individuals from North American and non-North American regions.

Prerequisites

Before you install kfre, ensure you have the following:

  • Python: Python 3.7.4 or higher is required to run kfre.

Additionally, kfre has the following package dependencies:

  • numpy: version 1.18.5 or higher
  • pandas: version 1.0.5 or higher
  • matplotlib: version 3.2.2 or higher
  • seaborn: version 0.10.1 or higher
  • scikit-learn: version 0.23.1 or higher
  • tqdm: version 4.48.0 or higher

Installation

You can install kfre directly from PyPI:

pip install kfre

📄 Official Documentation

https://lshpaner.github.io/kfre

🌐 Author Website

https://www.leonshpaner.com

⚖️ License

kfre is distributed under the MIT License. See LICENSE for more information.

📚 Citing kfre

If you use kfre in your research or projects, please consider citing it.

    @software{shpaner_2024_11100222,
      author       = {Shpaner, Leonid},
      title        = {{kfre: A Python Library for Reproducing Kidney 
                       Failure Risk Equations (KFRE)}},
      month        = may,
      year         = 2024,
      publisher    = {Zenodo},
      version      = {0.1.13},
      doi          = {10.5281/zenodo.11100222},
      url          = {https://doi.org/10.5281/zenodo.11100222}
    }

Support

If you have any questions or issues with kfre, please open an issue on this GitHub repository.

Acknowledgements

The KFRE model developed by Tangri et al. has made significant contributions to kidney disease research.

The kfre library is based on the risk prediction models developed in the studies referenced below. Please refer to these studies for an in-depth understanding of the kidney failure risk prediction models used within this library.

Special thanks to Panayiotis Petousis, PhD, Obidiugwu Duru, MD, MS, Kenn B. Daratha, PhD, Keith C. Norris, MD, PhD, Katherine R. Tuttle MD, FASN, FACP, FNKF, Susanne B. Nicholas, MD, MPH, PhD, and Alex Bui, PhD. Their exceptional work on end-stage kidney disease has greatly inspired the creation of this library.

References

  1. Ali, I., Donne, R. L., & Kalra, P. A. (2021). A validation study of the kidney failure risk equation in advanced chronic kidney disease according to disease aetiology with evaluation of discrimination, calibration and clinical utility. BMC Nephrology, 22(1), 194. https://doi.org/10.1186/s12882-021-02402-1 [1]_

  2. Kang, M. W. (2024). [KFRE validation dataset, Asian cohort]. Unpublished dataset provided by personal communication, June 26, 2024. Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.

  3. Kang, M. W., Tangri, N., Kim, Y. C., An, J. N., Lee, J., Li, L., Oh, Y. K., Kim, D. K., Joo, K. W., Kim, Y. S., Lim, C. S., & Lee, J. P. (2020). An independent validation of the kidney failure risk equation in an Asian population. Scientific Reports, 10, 12920. https://doi.org/10.1038/s41598-020-69715-3

  4. Sumida, K., Nadkarni, G. N., Grams, M. E., Sang, Y., Ballew, S. H., Coresh, J., Matsushita, K., Surapaneni, A., Brunskill, N., Chadban, S. J., Chang, A. R., Cirillo, M., Daratha, K. B., Gansevoort, R. T., Garg, A. X., Iacoviello, L., Kayama, T., Konta, T., Kovesdy, C. P., Lash, J., Lee, B. J., Major, R. W., Metzger, M., Miura, K., Naimark, D. M. J., Nelson, R. G., Sawhney, S., Stempniewicz, N., Tang, M., Townsend, R. R., Traynor, J. P., Valdivielso, J. M., Wetzels, J., Polkinghorne, K. R., & Heerspink, H. J. L. (2020). Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio for use in chronic kidney disease screening and prognosis. Annals of Internal Medicine, 173 (6), 426-435. https://doi.org/10.7326/M20-0529

  5. Tangri, N., Grams, M. E., Levey, A. S., Coresh, J., Appel, L. J., Astor, B. C., Chodick, G., Collins, A. J., Djurdjev, O., Elley, C. R., Evans, M., Garg, A. X., Hallan, S. I., Inker, L. A., Ito, S., Jee, S. H., Kovesdy, C. P., Kronenberg, F., Heerspink, H. J. L., Marks, A., Nadkarni, G. N., Navaneethan, S. D., Nelson, R. G., Titze, S., Sarnak, M. J., Stengel, B., Woodward, M., Iseki, K., & for the CKD Prognosis Consortium. (2016). Multinational assessment of accuracy of equations for predicting risk of kidney failure: A meta-analysis. JAMA, 315 (2), 164–174. https://doi.org/10.1001/jama.2015.18202

  6. Tangri, N., Stevens, L. A., Griffith, J., Tighiouart, H., Djurdjev, O., Naimark, D., Levin, A., & Levey, A. S. (2011). A predictive model for progression of chronic kidney disease to kidney failure. JAMA, 305 (15), 1553-1559. https://doi.org/10.1001/jama.2011.451

.. [1] This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kfre-0.1.13.tar.gz (30.3 kB view details)

Uploaded Source

Built Distribution

kfre-0.1.13-py3-none-any.whl (20.7 kB view details)

Uploaded Python 3

File details

Details for the file kfre-0.1.13.tar.gz.

File metadata

  • Download URL: kfre-0.1.13.tar.gz
  • Upload date:
  • Size: 30.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for kfre-0.1.13.tar.gz
Algorithm Hash digest
SHA256 c715b2d7fdb33dff6e7ac695207a427d35af4e72dec103e7dfc6edb8a6cfd6ee
MD5 89b1e8cfa8a33407c7849c6659f0e137
BLAKE2b-256 d02f39b7fe83f15efae35748a93049a0567ec740212ae2a9b673054e4a66dad9

See more details on using hashes here.

File details

Details for the file kfre-0.1.13-py3-none-any.whl.

File metadata

  • Download URL: kfre-0.1.13-py3-none-any.whl
  • Upload date:
  • Size: 20.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for kfre-0.1.13-py3-none-any.whl
Algorithm Hash digest
SHA256 815aa2b8a1b48815e8d61810156ee1acf4bfc93f57f517d4a80a937784a5af9a
MD5 5c164282d78f471a447914bf2b809fab
BLAKE2b-256 f47c67bad78b5512e36b1ab0f9267915aad0b838ba3159f3f6ec2486485bb3c1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page