Skip to main content

Modulo Commons del ecosistema Kloop. Contiene los modulos de uso común para los paquetes

Project description

Commons

Este repositorio de código se crea para implementar la microservicio Commons de la infraestructura de Klopp.

A continuación se proporciona una descripción de la estructura de los archivos y directorios más importantes:

Template

  • setup.py
  • [Notebook]
  • test
  • requirements.txt
    • Blibliotecas necesarias para reproducir el entorno

Estructura del proyecto

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
├── models             <- Trained and serialized models, model predictions, or model summaries
├── experiments 
│   ├── notebooks      <- Jupyter notebooks. Naming convention is a number (for ordering),
│   │    └── mlflow    <- Metretrics and model management 
│   ├── references     <- Data dictionaries, manuals, and all other explanatory materials.
│   ├── processed      <- The final, canonical data sets for modeling. 
│   └── data  
│     ├── external       <- Data from third party sources.
│     ├── interim        <- Intermediate data that has been transformed.
│     ├── processed      <- The final, canonical data sets for modeling.
│     └── raw            <- The original, immutable data dump.
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
├── setup.py           <- Run this project 
├── pipeline           <- Source pipeline for load, preprocessing, training and test 
│   ├── __init__.py    <- Makes src a Python module
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
├── categorization     <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   ├── categorization.py <- class and method run() for app running 
│   ├── classifier.py   <- Class for model ML
│   ├── consumer.py  <- class for Kafka consumer 
│   ├── controller_dynamo_db.py <- class for management CRUD 
│   ├── controller_ml_fow.py   <- Class for management models
│   ├── controller_posgrest_db.py  <- class for managemen CRUD  
│   ├── producer.py <- class for Kafka producer
│   ├── nicknames.py   <- Class 
│   ├── merchantnames.py  <- class 
│   └── logs       <- folder for logs files 
└── tox.ini            <- tox file with settings for running tox;(automate and standardize testing)

Reproducir proyectos

Software necesario

El proyecto se desarrollo con los siguientes requisitos a primer nivel :

Python 3.10.4

Se recomienda a nivel de desarrollo utilizar un entorno virtual administrado por conda.

conda create -n categorization python=3.10.4

Use sólo pip como gestor de paquetería después de crear en entorno virtual con conda. Los requisitos de las bibliotecas necesarias se pueden pasar a pip a través del archivo requiremets.txt

pip install -r requirements.txt

Ver pagína de python

Otra opcíon es utilizar un docker oficial de python con la versión cómo 3.10 como mínima. Esta es sólo si utilizas Linux o Windows como sistema operativo, existe problemas de compatibilidad para MacBooks M1

Docker Hub de Python

  • Para el entorno local se utiliza [Jupyer Notebook] como entorno de experimentación
  • Para administrar los modelos de ML se utiliza MLFlow con Posgrestdb
  • Como gestor de bases de datos relacional se utiliza PosgrestDB
  • Para almacenar información no estructurada se utiliza DynamoDB
  • Para versionamiento de los dataset se utiliza [DVC]
  • Para autoformatting se utilizan los paquetes Back, Flake8 y [autopep8] ()
  • Para pruebas unitarias se utiliza el paquete estándar de python unittest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

klp_commons-0.0.69.tar.gz (413.5 kB view details)

Uploaded Source

Built Distribution

klp_commons-0.0.69-py2.py3-none-any.whl (437.1 kB view details)

Uploaded Python 2Python 3

File details

Details for the file klp_commons-0.0.69.tar.gz.

File metadata

  • Download URL: klp_commons-0.0.69.tar.gz
  • Upload date:
  • Size: 413.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.0

File hashes

Hashes for klp_commons-0.0.69.tar.gz
Algorithm Hash digest
SHA256 33ce0eb7f5e07ae9a668b482f93c18d70522f0e3cb789fefc9ead87d03a24710
MD5 793a81b6f85f624899aa70b18b3c560c
BLAKE2b-256 3dafa42bb293948c482f4ceb2eee99cda0a9e01dd44190c0232422fc148236e0

See more details on using hashes here.

File details

Details for the file klp_commons-0.0.69-py2.py3-none-any.whl.

File metadata

  • Download URL: klp_commons-0.0.69-py2.py3-none-any.whl
  • Upload date:
  • Size: 437.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.0

File hashes

Hashes for klp_commons-0.0.69-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 bfe55e6776cd1a40f4050b91fcb93a6e1b2b5f33fb64bcda0ffb665d3cf43f0e
MD5 3345863afa4cbe172d309b8f90f174ab
BLAKE2b-256 f531af4accd29aa2ef5c339e642d81702f3b7007892a9658a8f5946813cc47b6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page