Implementation of KMP algorithm and simple generalizations.
Project description
KMP Utilities
The KMP utils library provides a python binding to C++ for fast, linear time string processing. Currently available for linux only.
Installation
You can install the kmp_utils library with the following command:
pip install kmp_utils
Then import into your program as:
import kmp_utils
def main():
s = "aabaaba"
t = "ab"
x = kmp_utils.split(s, t)
print(x)
pass
if __name__ == '__main__':
main()
>>> ['a', 'a', 'a']
This library requires pybind11 and python >= 3
Examples
The kmp_utils library consists of 5 API methods.
find_all(s, t). Reading from left to right starting from the beginning of string s, find all disjoint occurrences of string t in s by returning the starting indices of any such occurrences. This returns an increasing list.
find_all("aaaaaa", "aa") = [0, 2, 4]
find_all("aabaaba", "ab") = [1, 4]
find_all("sdsdsd", "ab") = []
find_all_left(s, t). Reading from right to left starting from the end of string s, find all disjoint occurrences of string t in s by returning the starting indices of any such occurrences. This returns a decreasing list.
find_all_left("aaabbb", "aa") = [1]
find_all_left("aabaaba", "ab") = [4, 1]
find_all_left("sdsdsd", "ab") = []
get_next_right(s, i, t). Reading from left to right starting from index i in string s, find the next occurence of string t in s by returning the starting index. Returns -1 if t cannot be found.
get_next_right("aaaaaa", 5, "aa") = -1
get_next_right("aabaaba", 3, "ab") = 4
get_next_right("sdsdsd", 0, "ab") = -1
get_next_left(s, i, t). Reading from right to left starting from index i in string s, find the next occurence of string t in s by returning the starting index. Returns -1 if t cannot be found.
get_next_left("aaaaa", 1, "aa") = 0
get_next_left("aaaaa", 1, "aaa") = -1
get_next_left("ababaabb", 6, "ab") = 5
split(s, t). Split string s by t starting from the beginning of s.
split("aaaaa", "aa") = ['', '', 'a']
split("axbxcx", "x") = ['a', 'b', 'c']
split("ababaabb", "xs") = ['ababaabb']
Performance Testing
We compare a linear python iteration with the kmp_utils.find_all method with the following code.
import kmp_utils
import time
from typing import List
def python_kmp_find_all(text: str, pattern: str) -> List[int]:
result = []
prefixTable = computePrefixTable(pattern)
index = KMPAlgorithm(text, pattern, 0, prefixTable)
while index != -1:
result.append(index)
index = KMPAlgorithm(text, pattern, index + len(pattern), prefixTable)
return result
def KMPAlgorithm(text: str, pattern: str, index: int, prefixTable: List[int]) -> int:
n = len(text)
m = len(pattern)
if n-index < m or m == 0:
return -1
i = index
j = 0
while i < n:
if text[i] == pattern[j]:
i += 1
j += 1
if j == m:
return i-m
continue
while j > 0 and pattern[j] != text[i]:
j = prefixTable[j-1]
if j == 0 and pattern[j] != text[i]:
i += 1
return -1
def computePrefixTable(pattern: str) -> List[int]:
m = len(pattern)
prefixTable = [0 for i in range(0,m)]
j = 0
for i in range(1,m):
while j > 0 and pattern[j] != pattern[i]:
j = prefixTable[j-1]
if pattern[j] == pattern[i]:
j += 1
prefixTable[i] = j
return prefixTable
def p1():
n = 1000000
s1 = 'a' * n
s2 = 'a' * n
p1 = 'a' * 10
p2 = 'a' * 10
t1 = time.time()
x1 = kmp_utils.find_all(s1, p1)
dt = time.time() - t1
print(f'kmp_utils time: {dt} seconds')
t1 = time.time()
x2 = python_kmp_find_all(s2, p2)
dt = time.time() - t1
print(f'kmp algorithm in python time: {dt} seconds')
assert(len(x1) == len(x2))
for i in range(0, len(x1)):
assert x1[i] == x2[i]
def main():
p1()
pass
if __name__ == '__main__':
main()
>>> kmp_utils time: 0.009107112884521484 seconds
>>> kmp algorithm in python time: 0.40862512588500977 seconds
For coding interview preparation, please visit [algorithmspath.com] (https://algorithmspath.com).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file kmp_utils-1.0.2.tar.gz.
File metadata
- Download URL: kmp_utils-1.0.2.tar.gz
- Upload date:
- Size: 4.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
fe0893beebb822969073256034fe273bb7c1dab7f909ccaa72e9bffb4eebb8d1
|
|
| MD5 |
cf99d1b28c41e6dbc655e0a0f68afa69
|
|
| BLAKE2b-256 |
e20bc3d64e22f2549b3697b97ca6605e76bf8a38b0405bcfd5279e5e5ca67b34
|