Skip to main content

A tiny sentence/word tokenizer for Japanese text written in Python

Project description

🌿 Konoha: Simple wrapper of Japanese Tokenizers

Open In Colab

GitHub stars

Downloads Downloads Downloads

Build Status Documentation Status Python PyPI GitHub Issues GitHub Pull Requests

Konoha is a Python library for providing easy-to-use integrated interface of various Japanese tokenizers, which enables you to switch a tokenizer and boost your pre-processing.

Supported tokenizers

Also, konoha provides rule-based tokenizers (whitespace, character) and a rule-based sentence splitter.

Quick Start with Docker

Simply run followings on your computer:

docker run --rm -p 8000:8000 -t himkt/konoha  # from DockerHub

Or you can build image on your machine:

git clone https://github.com/himkt/konoha  # download konoha
cd konoha && docker-compose up --build  # build and launch container

Tokenization is done by posting a json object to localhost:8000/api/v1/tokenize. You can also batch tokenize by passing texts: ["1つ目の入力", "2つ目の入力"] to the server.

(API documentation is available on localhost:8000/redoc, you can check it using your web browser)

Send a request using curl on your terminal. Note that a path to an endpoint is changed in v4.6.4. Please check our release note (https://github.com/himkt/konoha/releases/tag/v4.6.4).

$ curl localhost:8000/api/v1/tokenize -X POST -H "Content-Type: application/json" \
    -d '{"tokenizer": "mecab", "text": "これはペンです"}'

{
  "tokens": [
    [
      {
        "surface": "これ",
        "part_of_speech": "名詞"
      },
      {
        "surface": "は",
        "part_of_speech": "助詞"
      },
      {
        "surface": "ペン",
        "part_of_speech": "名詞"
      },
      {
        "surface": "です",
        "part_of_speech": "助動詞"
      }
    ]
  ]
}

Installation

I recommend you to install konoha by pip install 'konoha[all]' or pip install 'konoha[all_with_integrations]'. (all_with_integrations will install AllenNLP)

  • Install konoha with a specific tokenizer: pip install 'konoha[(tokenizer_name)].
  • Install konoha with a specific tokenizer and AllenNLP integration: pip install 'konoha[(tokenizer_name),allennlp].
  • Install konoha with a specific tokenizer and remote file support: pip install 'konoha[(tokenizer_name),remote]'

If you want to install konoha with a tokenizer, please install konoha with a specific tokenizer (e.g. konoha[mecab], konoha[sudachi], ...etc) or install tokenizers individually.

Example

Word level tokenization

from konoha import WordTokenizer

sentence = '自然言語処理を勉強しています'

tokenizer = WordTokenizer('MeCab')
print(tokenizer.tokenize(sentence))
# => [自然, 言語, 処理, を, 勉強, し, て, い, ます]

tokenizer = WordTokenizer('Sentencepiece', model_path="data/model.spm")
print(tokenizer.tokenize(sentence))
# => [▁, 自然, 言語, 処理, を, 勉強, し, ています]

For more detail, please see the example/ directory.

Remote files

Konoha supports dictionary and model on cloud storage (currently supports Amazon S3). It requires installing konoha with the remote option, see Installation.

# download user dictionary from S3
word_tokenizer = WordTokenizer("mecab", user_dictionary_path="s3://abc/xxx.dic")
print(word_tokenizer.tokenize(sentence))

# download system dictionary from S3
word_tokenizer = WordTokenizer("mecab", system_dictionary_path="s3://abc/yyy")
print(word_tokenizer.tokenize(sentence))

# download model file from S3
word_tokenizer = WordTokenizer("sentencepiece", model_path="s3://abc/zzz.model")
print(word_tokenizer.tokenize(sentence))

Sentence level tokenization

from konoha import SentenceTokenizer

sentence = "私は猫だ。名前なんてものはない。だが,「かわいい。それで十分だろう」。"

tokenizer = SentenceTokenizer()
print(tokenizer.tokenize(sentence))
# => ['私は猫だ。', '名前なんてものはない。', 'だが,「かわいい。それで十分だろう」。']

AllenNLP integration

Konoha provides AllenNLP integration, it enables users to specify konoha tokenizer in a Jsonnet config file. By running allennlp train with --include-package konoha, you can train a model using konoha tokenizer!

For example, konoha tokenizer is specified in xxx.jsonnet like following:

{
  "dataset_reader": {
    "lazy": false,
    "type": "text_classification_json",
    "tokenizer": {
      "type": "konoha",  // <-- konoha here!!!
      "tokenizer_name": "janome",
    },
    "token_indexers": {
      "tokens": {
        "type": "single_id",
        "lowercase_tokens": true,
      },
    },
  },
  ...
  "model": {
  ...
  },
  "trainer": {
  ...
  }
}

After finishing other sections (e.g. model config, trainer config, ...etc), allennlp train config/xxx.jsonnet --include-package konoha --serialization-dir yyy works! (remember to include konoha by --include-package konoha)

For more detail, please refer my blog article (in Japanese, sorry).

Test

python -m pytest

Article

Acknowledgement

Sentencepiece model used in test is provided by @yoheikikuta. Thanks!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

konoha-4.6.5.tar.gz (17.4 kB view details)

Uploaded Source

Built Distribution

konoha-4.6.5-py3-none-any.whl (20.1 kB view details)

Uploaded Python 3

File details

Details for the file konoha-4.6.5.tar.gz.

File metadata

  • Download URL: konoha-4.6.5.tar.gz
  • Upload date:
  • Size: 17.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.5 CPython/3.9.5 Darwin/20.4.0

File hashes

Hashes for konoha-4.6.5.tar.gz
Algorithm Hash digest
SHA256 c83023e3bda68aa910bfc115c6ab72d10b2b9478093253b4e17a20b0acf6bb7f
MD5 db61549c513bf7e3ff106682c47ca88b
BLAKE2b-256 38da0758bd71abe53033f2a148e118e245a8eb27eff95b052480d9832b35f157

See more details on using hashes here.

File details

Details for the file konoha-4.6.5-py3-none-any.whl.

File metadata

  • Download URL: konoha-4.6.5-py3-none-any.whl
  • Upload date:
  • Size: 20.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.5 CPython/3.9.5 Darwin/20.4.0

File hashes

Hashes for konoha-4.6.5-py3-none-any.whl
Algorithm Hash digest
SHA256 6d402665d1986a2494db66247faf728d999388084b5ae2abd4295172705bbb78
MD5 5b8309426c53d14e3211f2f7d89d8725
BLAKE2b-256 717048a0bd55f79c328504fe6fe7ae8ff651f77a2aadbb1911701385d9bb5ca3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page