Skip to main content

Low level implementations for computer vision in Rust

Project description

kornia-rs: low level computer vision library in Rust

English | 简体中文

Crates.io Version PyPI version Documentation License Discord

The kornia crate is a low level library for Computer Vision written in Rust 🦀

Use the library to perform image I/O, visualization and other low level operations in your machine learning and data-science projects in a thread-safe and efficient way.

📚 Table of Contents

Getting Started

Quick Example

The following example demonstrates how to read and display image information:

use kornia::image::Image;
use kornia::io::functional as F;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // read the image
    let image: Image<u8, 3, _> = F::read_image_any_rgb8("tests/data/dog.jpeg")?;

    println!("Hello, world! 🦀");
    println!("Loaded Image size: {:?}", image.size());
    println!("\nGoodbyte!");

    Ok(())
}
Hello, world! 🦀
Loaded Image size: ImageSize { width: 258, height: 195 }

Goodbyte!

Features

  • 🦀 The library is primarily written in Rust.
  • 🚀 Multi-threaded and efficient image I/O, image processing and advanced computer vision operators.
  • 🔢 Efficient Tensor and Image API for deep learning and scientific computing.
  • 🐍 Python bindings are created with PyO3/Maturin.
  • 📦 We package with support for Linux [amd64/arm64], macOS and Windows.
  • Supported Python versions are 3.7/3.8/3.9/3.10/3.11/3.12/3.13, including the free-threaded build.

Supported image formats

  • Read images from AVIF, BMP, DDS, Farbeld, GIF, HDR, ICO, JPEG (libjpeg-turbo), OpenEXR, PNG, PNM, TGA, TIFF, WebP.

Image processing

  • Convert images to grayscale, resize, crop, rotate, flip, pad, normalize, denormalize, and other image processing operations.

Video processing

  • Capture video frames from a camera and video writers.

🛠️ Installation

🦀 Rust

Add the following to your Cargo.toml:

[dependencies]
kornia = "0.1"

Alternatively, you can use each sub-crate separately:

[dependencies]
kornia-tensor = "0.1"
kornia-tensor-ops = "0.1"
kornia-io = "0.1"
kornia-image = "0.1"
kornia-imgproc = "0.1"
kornia-icp = "0.1"
kornia-linalg = "0.1"
kornia-3d = "0.1"
kornia-apriltag = "0.1"
kornia-vlm = "0.1"
kornia-nn = "0.1"
kornia-pnp = "0.1"
kornia-lie = "0.1"

🐍 Python

pip install kornia-rs

A subset of the full rust API is exposed. See the kornia documentation for more detail about the API for python functions and objects exposed by the kornia-rs Python module.

The kornia-rs library is thread-safe for use under the free-threaded Python build.

System Dependencies (Optional)

Depending on the features you want to use, you might need to install the following dependencies in your system:

v4l (Video4Linux camera support)

sudo apt-get install clang

turbojpeg

sudo apt-get install nasm

gstreamer

sudo apt-get install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev

Note: Check the gstreamer installation guide for more details.

Examples: Image Processing

The following example shows how to read an image, convert it to grayscale and resize it. The image is then logged to a rerun recording stream for visualization.

For more examples and use cases, check out the examples directory, which includes:

  • Image processing operations (resize, rotate, normalize, filters)
  • Video capture and processing
  • AprilTag detection
  • Feature detection (FAST)
  • Visual language models (VLM) integration
  • And more...
use kornia::{image::{Image, ImageSize}, imgproc};
use kornia::io::functional as F;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // read the image
    let image: Image<u8, 3, _> = F::read_image_any_rgb8("tests/data/dog.jpeg")?;
    let image_viz = image.clone();

    let image_f32: Image<f32, 3, _> = image.cast_and_scale::<f32>(1.0 / 255.0)?;

    // convert the image to grayscale
    let mut gray = Image::<f32, 1, _>::from_size_val(image_f32.size(), 0.0)?;
    imgproc::color::gray_from_rgb(&image_f32, &mut gray)?;

    // resize the image
    let new_size = ImageSize {
        width: 128,
        height: 128,
    };

    let mut gray_resized = Image::<f32, 1, _>::from_size_val(new_size, 0.0)?;
    imgproc::resize::resize_native(
        &gray, &mut gray_resized,
        imgproc::interpolation::InterpolationMode::Bilinear,
    )?;

    println!("gray_resize: {:?}", gray_resized.size());

    // create a Rerun recording stream
    let rec = rerun::RecordingStreamBuilder::new("Kornia App").spawn()?;

    rec.log(
        "image",
        &rerun::Image::from_elements(
            image_viz.as_slice(),
            image_viz.size().into(),
            rerun::ColorModel::RGB,
        ),
    )?;

    rec.log(
        "gray",
        &rerun::Image::from_elements(gray.as_slice(), gray.size().into(), rerun::ColorModel::L),
    )?;

    rec.log(
        "gray_resize",
        &rerun::Image::from_elements(
            gray_resized.as_slice(),
            gray_resized.size().into(),
            rerun::ColorModel::L,
        ),
    )?;

    Ok(())
}

Screenshot from 2024-03-09 14-31-41

Python Usage

Reading Images

Load an image, which is converted directly to a numpy array to ease the integration with other libraries.

import kornia_rs as K
import numpy as np
import torch

# load an image with using libjpeg-turbo
img: np.ndarray = K.read_image_jpeg("dog.jpeg")

# alternatively, load other formats
# img: np.ndarray = K.read_image_any("dog.png")

assert img.shape == (195, 258, 3)

# convert to dlpack to import to torch
img_t = torch.from_dlpack(img)
assert img_t.shape == (195, 258, 3)

Writing Images

Write an image to disk:

import kornia_rs as K
import numpy as np

# load an image with using libjpeg-turbo
img: np.ndarray = K.read_image_jpeg("dog.jpeg")

# write the image to disk
K.write_image_jpeg("dog_copy.jpeg", img)

Encoding and Decoding

Encode or decode image streams using the turbojpeg backend:

import kornia_rs as K

# load image with kornia-rs
img = K.read_image_jpeg("dog.jpeg")

# encode the image with jpeg
image_encoder = K.ImageEncoder()
image_encoder.set_quality(95)  # set the encoding quality

# get the encoded stream
img_encoded: list[int] = image_encoder.encode(img)

# decode back the image
image_decoder = K.ImageDecoder()

decoded_img: np.ndarray = image_decoder.decode(bytes(img_encoded))

Image Resizing

Resize an image using the kornia-rs backend with SIMD acceleration:

import kornia_rs as K

# load image with kornia-rs
img = K.read_image_jpeg("dog.jpeg")

# resize the image
resized_img = K.resize(img, (128, 128), interpolation="bilinear")

assert resized_img.shape == (128, 128, 3)

🧑‍💻 Development

Prerequisites

Before you begin, ensure you have rust and python3 installed on your system.

Setting Up Your Development Environment

  1. Install Rust using rustup:

    curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
    
  2. Install uv to manage Python dependencies:

    curl -LsSf https://astral.sh/uv/install.sh | sh
    
  3. Install just command runner for managing development tasks:

    cargo install just
    
  4. Clone the repository to your local directory:

    git clone https://github.com/kornia/kornia-rs.git
    

Available Commands

You can check all available development commands by running just in the root directory of the project:

$ just
Available recipes:
    check-environment                 # Check if the required binaries for the project are installed
    clean                             # Clean up caches and build artifacts
    clippy                            # Run clippy with all features
    clippy-default                    # Run clippy with default features
    fmt                               # Run autoformatting and linting
    py-build py_version='3.9'         # Create virtual environment, and build kornia-py
    py-build-release py_version='3.9' # Create virtual environment, and build kornia-py for release
    py-install py_version='3.9'       # Create virtual environment, and install dev requirements
    py-test                           # Test the kornia-py code with pytest
    test name=''                      # Test the code or a specific test

🐳 Development Container

This project includes a development container configuration for a consistent development environment across different machines.

Using the Dev Container:

  1. Install the Remote - Containers extension in Visual Studio Code
  2. Open the project folder in VS Code
  3. Press F1 and select Remote-Containers: Reopen in Container
  4. VS Code will build and open the project in the containerized environment

The devcontainer includes all necessary dependencies and tools for building and testing kornia-rs.

🦀 Rust Development

Compile the project and run all tests:

just test

To run specific tests:

just test image

To run clippy linting:

just clippy

🐍 Python Development

Build Python wheels using maturin:

just py-build

Run Python tests:

just py-test

💜 Contributing

We welcome contributions! Please read CONTRIBUTING.md for:

  • Coding standards and style guidelines
  • Development workflow
  • How to run local checks before submitting PRs

Community

This is a child project of Kornia.

Citation

If you use kornia-rs in your research, please cite:

@misc{2505.12425,
Author = {Edgar Riba and Jian Shi and Aditya Kumar and Andrew Shen and Gary Bradski},
Title = {Kornia-rs: A Low-Level 3D Computer Vision Library In Rust},
Year = {2025},
Eprint = {arXiv:2505.12425},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kornia_rs-0.1.10.tar.gz (145.6 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

kornia_rs-0.1.10-cp314-cp314t-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.14tWindows x86-64

kornia_rs-0.1.10-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64

kornia_rs-0.1.10-cp314-cp314t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ ARM64

kornia_rs-0.1.10-cp314-cp314t-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

kornia_rs-0.1.10-cp314-cp314t-macosx_10_12_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.14tmacOS 10.12+ x86-64

kornia_rs-0.1.10-cp314-cp314-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.14Windows x86-64

kornia_rs-0.1.10-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.10-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.10-cp314-cp314-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

kornia_rs-0.1.10-cp314-cp314-macosx_10_12_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.14macOS 10.12+ x86-64

kornia_rs-0.1.10-cp313-cp313t-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.13tWindows x86-64

kornia_rs-0.1.10-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ x86-64

kornia_rs-0.1.10-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ARM64

kornia_rs-0.1.10-cp313-cp313t-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

kornia_rs-0.1.10-cp313-cp313t-macosx_10_12_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.13tmacOS 10.12+ x86-64

kornia_rs-0.1.10-cp313-cp313-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.13Windows x86-64

kornia_rs-0.1.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.10-cp313-cp313-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

kornia_rs-0.1.10-cp313-cp313-macosx_10_12_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.13macOS 10.12+ x86-64

kornia_rs-0.1.10-cp312-cp312-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.12Windows x86-64

kornia_rs-0.1.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.10-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

kornia_rs-0.1.10-cp312-cp312-macosx_10_12_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12macOS 10.12+ x86-64

kornia_rs-0.1.10-cp311-cp311-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.11Windows x86-64

kornia_rs-0.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.10-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

kornia_rs-0.1.10-cp311-cp311-macosx_10_12_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11macOS 10.12+ x86-64

kornia_rs-0.1.10-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10Windows x86-64

kornia_rs-0.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.10-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

kornia_rs-0.1.10-cp310-cp310-macosx_10_12_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10macOS 10.12+ x86-64

kornia_rs-0.1.10-cp39-cp39-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9Windows x86-64

kornia_rs-0.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.10-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

kornia_rs-0.1.10-cp39-cp39-macosx_10_12_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9macOS 10.12+ x86-64

kornia_rs-0.1.10-cp38-cp38-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8Windows x86-64

kornia_rs-0.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.10-cp38-cp38-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

kornia_rs-0.1.10-cp38-cp38-macosx_10_12_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8macOS 10.12+ x86-64

kornia_rs-0.1.10-cp37-cp37m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.7mWindows x86-64

kornia_rs-0.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

kornia_rs-0.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

kornia_rs-0.1.10-cp37-cp37m-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.7mmacOS 11.0+ ARM64

kornia_rs-0.1.10-cp37-cp37m-macosx_10_12_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7mmacOS 10.12+ x86-64

File details

Details for the file kornia_rs-0.1.10.tar.gz.

File metadata

  • Download URL: kornia_rs-0.1.10.tar.gz
  • Upload date:
  • Size: 145.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.9.6

File hashes

Hashes for kornia_rs-0.1.10.tar.gz
Algorithm Hash digest
SHA256 5fd3fbc65240fa751975f5870b079f98e7fdcaa2885ea577b3da324d8bf01d81
MD5 861f51e14a5fc710fdd8812b01c37df9
BLAKE2b-256 ab178b3518ece01512a575b18f86b346879793d3dea264b314796bbd44d42e11

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp314-cp314t-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 257eb0a780f990c0c44ac47acb77504dd95b8df0c592fd31354da1228df6678d
MD5 bde6df98f306d26a6063f2ebb373d225
BLAKE2b-256 ee3640a3e3a235c370f5f61a8f9a7bdedf47d1bdd8f7d7e145e551545babff6b

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc18ba839f5c10ceb4757342ee7530cef8a0ecdd20486b8bbe14a56f72fa7037
MD5 7fa3017c71e8fb2b130cd3be87b79930
BLAKE2b-256 2efaa2adce992b5eb65ef8adfc6f4465989948bfa8b875638e17c214541af25a

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp314-cp314t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp314-cp314t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 68eb25ba4639fa5e1cd94a10fb6410c8840c9f0162e5912d834c4a8c7c174493
MD5 f82dbd803eac7e01f332a4241117a0e2
BLAKE2b-256 531be92606e0fa9a1b52ecf57faf322dcc076ae35315b4e1870d380fd64926d7

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b63ee175125892ef18027bd3a43b447fd53f9bf42cea4d6f699ab4e69cf3f16
MD5 43af69271ade2ed3214e9bae89825578
BLAKE2b-256 38af831e79b45702f8b6102438b1ff9b44a912669890cdf209cd275257f6d655

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp314-cp314t-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp314-cp314t-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f0db8b41ae03a746bb0dcb970d5ff2fd66213adb4a3b4de1186fe86205698e89
MD5 13b274bc7d549fcebac542fe53c2a9f1
BLAKE2b-256 d18f45895818f3c7a5009737119b075db6b88bbf00938275611bc5d2cfbd0b2a

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 6de4e73b1c90cc76b7486491866eb9e61e5cf34d3a4016957d4563ac7d3ee39a
MD5 7f6a75a993ebba30b3ead497dc95a953
BLAKE2b-256 dbe29f50fce2d8e9edd6b2d09908b6d5613f9ead992bf2e80060e080f2e7d64d

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 614aeffdb1d39c4041ace0e0fc318b36eb211f6c133912984e946174e67dbb42
MD5 5730a3311df76454cb0c2f7ff20898b3
BLAKE2b-256 9108cb73b7e87a07b2af1146988d159d48722f0a28f550f920397c8964ab7c19

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 61f126644f49ff9947d9402126edacfeeb4b47c0999a7af487d27ce4fc4cbc2a
MD5 c6a0d4f72738aa990db7ba2fd1286c51
BLAKE2b-256 43ec7987aa5fb7d188180866bd8dafa5bb5b1f00a74ba738bb4e2abe63c589ac

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60bca692911e5969e51d256299ecc6e90d32b9a2c5bf7bd1c7eb8f096cb9234b
MD5 64a2eb41fc9f5da7cbc18999cf5533f0
BLAKE2b-256 542bfd5f919723aaa69ec5c1e60b10b7904a9126be5b9d6ccc0267fa42ca77e0

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp314-cp314-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp314-cp314-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 119eb434d1384257cae6c1ee9444e1aa1b0fda617f6d5a79fef3f145fdac70ac
MD5 277083038b81d08ae8850265114f00eb
BLAKE2b-256 91d58ed1288a51d2ad71a6c01152ceccdd2d92f21692dfd2304b1ae9383496fa

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp313-cp313t-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 b80a037e34d63cb021bcd5fc571e41aff804a2981311f66e883768c6b8e5f8de
MD5 054e5e7843349d436a81e08c8f156d11
BLAKE2b-256 8df4d62728d86bc67f5516249b154ff0bdfcf38a854dae284ff0ce62da87af99

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d9b07e2ae79e423b3248d94afd092e324c5ddfe3157fafc047531cc8bffa6a3
MD5 dafd69958c55265ef1c637a6041bede6
BLAKE2b-256 19263ac706d1b36761c0f7a36934327079adcb42d761c8c219865123d49fc1b2

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 021b0a02b2356b12b3954a298f369ed4fe2dd522dcf8b6d72f91bf3bd8eea201
MD5 d17e2ff78861295494d1ea46bb61ece9
BLAKE2b-256 186c6fc86eb855bcc723924c3b91de98dc6c0f381987ce582e080b8eade3bc88

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f2bcfa438d6b5dbe07d573afc980f2871f6639b2eac5148b8c0bba4f82357b9a
MD5 6c8e1b79dce0865ac27fb213f5039294
BLAKE2b-256 965f5ecde42b7c18e7df26c413848a98744427c3d370f5eed725b65f0bc356fb

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp313-cp313t-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp313-cp313t-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0b375f02422ef5986caed612799b4ddcc91f57f303906868b0a8c397a17e7607
MD5 0850fde626408cf7ff6db0a7f05819e9
BLAKE2b-256 a5d532b23d110109eb77b2dc952be75411f7e495da9105058e2cb08924a9cc90

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 c57d157bebe64c22e2e44c72455b1c7365eee4d767e0c187dc28f22d072ebaf7
MD5 5d51f7e34119562b50e898279a77fa55
BLAKE2b-256 f77562785aba777d35a562a97a987d65840306fab7a8ecd2d928dd8ac779e29b

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa3464de8f9920d87415721c36840ceea23e054dcb54dd9f69189ba9eabce0c7
MD5 f0b5ee4f554fa9560097cde0ba5b2745
BLAKE2b-256 2516ec8dc3ce1d79660ddd6a186a77037e0c3bf61648e6c72250280b648fb291

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 38087da7cdf2bffe10530c0d53335dd1fc107fae6521f2dd4797c6522b6d11b3
MD5 d3a70dd6ccbb464243cc90ac29b10dc1
BLAKE2b-256 c110afd700455105fdba5b043d724f3a65ca36259b89c736a3b71d5a03103808

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 63b802aaf95590276d3426edc6d23ff11caf269d2bc2ec37cb6c679b7b2a8ee0
MD5 39bcd15241a0a05f2e448d3da7c1123f
BLAKE2b-256 e4edbd970ded1d819557cc33055d982b1847eb385151ea5b0c915c16ed74f5c0

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp313-cp313-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp313-cp313-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 950a943f91c2cff94d80282886b0d48bbc15ef4a7cc4b15ac819724dfdb2f414
MD5 58a6773166a09836409f515bd8ed4982
BLAKE2b-256 90011d658b11635431f8c31f416c90ca99befdc1f4fdd20e91a05b480b9c0ea8

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 34111ce1c8abe930079b4b0aeb8d372f876c621a867ed03f77181de685e71a8f
MD5 590ef68604ed4a05707780c1782e58c6
BLAKE2b-256 d3b80ddbdf1d35fec3ef24f5b8cc29eb633ce5ce16c94c9fb090408c1280abe9

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f332a2a034cc791006f25c2d85e342a060887145e9236e8e43562badcadededf
MD5 a50dae7971f9df96a28c0f1c8a43c4bd
BLAKE2b-256 63d4315f358b2a2c29d9af3a73f3d1973c2fd8e0cdeb65a57af98643e66fa7c8

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d874ca12dd58871f9849672d9bf9fa998398470a88b52d61223ce2133b196662
MD5 03fb4a2de2ad8339250f9d4aa7ef706b
BLAKE2b-256 68f70b3e90b9d0a25e6211c7ac9fa1dfed4db1306a812c359ee49678390a1bdc

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8ecf2ba0291cc1bb178073d56e46b16296a8864a20272b63af02ee88771cb574
MD5 dd94ca87baea20050d942ca7599b1668
BLAKE2b-256 83dc29e5710cbc5d01c155ee1fd7621db48b94378a7ae394741bb34a6bfb36d9

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f0809277e51156d59be3c39605ba9659e94f7a4cf3b0b6c035ec2f06f6067881
MD5 a6a2a234f5fe7c373376f0ff64523c2d
BLAKE2b-256 d86c8248f08c90a10d6b8ca2e74783da8df7fa509f46b64a3b4fbb7dd0ac4e9c

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1d300ea6d4666e47302fba6cc438556d91e37ce41caf291a9a04a8f74c231d0b
MD5 a9dc1bb056d16cc1eeefd5828f781f31
BLAKE2b-256 40485e171c98b742139bebd1bd593d768e3c045f824bf0ae14190b63f0ac0acc

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c3e237a8428524ad9f86599c0c47b355bc3007669fe297ea3fbd59cd64bc2f7
MD5 74d491af218514b8f1e1cac8e3f29ad0
BLAKE2b-256 93a42e6e33da900f19ae6411bfad41d317e56f1ae4f204bd73e61f0881bd5418

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6b0adb81858a8963455f2f0da01fcd6ea3296147b918306488edeeaf6bc2a979
MD5 4c0104c55b3d5c79a5cbfd3ca4a9a3a7
BLAKE2b-256 0ae4c3484e5921a08e6368f0565c30646741fd12b46cb45c962d519cac3d12ad

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 68e90101a34ba2bbce920332b25fd4d25c8c546d9a241b2606a6d886df2dd1ed
MD5 7a7749834490d25a2b6990d0c5a1bc19
BLAKE2b-256 ae616125a970249e04dd31cf3edf3fb0ceb98ea65269bc416ba48fd70f9a8f5e

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6757940733f13c52c4f142b9b11e3e9bd12ef9d209e333300602e86e21f5ae2f
MD5 33b3e0eaaf3e3d879d52189d7679d35f
BLAKE2b-256 2025ab91a87cefd8d92a10749fa5d923366dfd2a2d240d9e57260e4218e9a5af

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 74f17ea9afc0a5312832c32f6670e1a4b2162dcf9a8908fb46bbb56d2c707e9e
MD5 18f4e4f848614531c51be90df66dcc0a
BLAKE2b-256 5c133d0a45f297b1a3f308893751b62080898ce415c61a3629a3d6b04cf55db7

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 859942c70f503bba813c99a39d3011d3e51f294db8058f87842efa180955cab4
MD5 4dec85e6a5b6005e6b8fbeb33a18ec88
BLAKE2b-256 f55a907580d1e573bc1862557cb70d1f1888bde1b33240d15cd10ff06c93a57c

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 edb94ce80a614a5f00cb68755d7a182236482584e78388217974ef811f4dbb30
MD5 2cbf084cfb8097a94022c8ca62df0a1a
BLAKE2b-256 3143cff694d864bf60e1e3853ec98bdabc66433f0eeffb7e7f97d27a0b907a88

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9bc8d5de7d7611b68746b2feff594a073740c4f915d0ccc37bd1d189029c20fe
MD5 e5e2f298fe42b2de61796b1ec7b0480f
BLAKE2b-256 17aa77f5882707467a6af0833b3ac1497638352bc391d082713b24a3bd187f73

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e95ccd4b3f73a0d5cbe16c03fd705fa8d75e9df7b044ba9a6c5957b2591003f3
MD5 b84c68952bbf91663d550f2456273887
BLAKE2b-256 bb406a59c5b99e19e1be7fff1d68dd3b3eddc80e5304dab75ebb78d0199e2484

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c414a758624e18b004f97029caa4c439244686faf4a1d67854ec4ad1e6dfd2ee
MD5 ca798543af37a3f474f9dc80830f9800
BLAKE2b-256 82648f3e435524efe06e5e278a73d8811f7a3ed8e42fe9744c7cfe989ccbd319

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 642ba9b8ba977f3d7c8f21ae63aee9c9e10447bd05838ee308acd6a4a9cda529
MD5 7d9069a161b476dfef66e8820014b40a
BLAKE2b-256 4042ca63e00876831c78ac86fd892a300841054ad8e10563995b507e673eb1a5

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0afc523fcd1644e24c8cc095a21565789a583a1637d09dbc31e0f1fc8ad41974
MD5 bc124e93e86576711da0bcf29c5b8b0a
BLAKE2b-256 e10ca916635505e6e9fc84b05dba0fb187d422325013bdc00a01438db81e1605

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1e7bc90f9d0aa96ccb8fb98664ee8a8a4427287e6051efa239e457a768c29908
MD5 a68a97501b15236e1fcd76087c3c5c11
BLAKE2b-256 421c00c66ea77b424fc80f8ba2319a70ed6b9eeb6d0fcaef6ee9cc914a2e5798

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e2a0a982aa24ca2b12d90a256224ea5d771e587f0033c10b6794b139ebbcca04
MD5 ef6d766f7e0e45a76b4f6b85b3ec39be
BLAKE2b-256 87688296f7d6efd0ae4ff7439344f62820379dc4eaf4101bb63ee550dcb20150

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5bc590b7ae2d03cf67c2f06413de7b4b0730b55f1e4438726071bc1fe533cc02
MD5 9fc20e06c53b711e7346e816d5ea4dbe
BLAKE2b-256 ebcee8cc6f5c22792746bf2d8d77372cb7a9601fe6ec69ba4ce861818088a5a6

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8f5d6654029d17b7568184e639d9f6babefd2f6c65e0cb57ffc0181d4cb02ec
MD5 c8c19dc04243b4fd5a2e5540934b10fc
BLAKE2b-256 9054ae4a409a1ca66ab7da25de3c757eb5bde6cb3fa4a103153f2739fae6fa4e

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 50231f25ca4f3d70e6fafeb7aab318df4131a5bfe505d80b6d731beadf4b3fa8
MD5 8d30d9c0a1bf039bea80c861504504a4
BLAKE2b-256 b59a37d57ec064e8a217ec815aa56a858ee584b48b056726a23c8c37930c137f

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0cfbbac04068af6640ef2ab998e0c65e63d4ebd2da0270f6e592d48b5a72a34a
MD5 1e3ad1f4ed1bcbc65d594b99ba2bbeb8
BLAKE2b-256 daadccffb81a4cd4d7356881fe44ae94c76fa859f24a0ac2a3768bb39630db9a

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 202031b5771c987849cb5a5707ad76d2dc921062d3b1d148389d25c612a8ea2d
MD5 f2d4c7ac8f0095618e23726843955892
BLAKE2b-256 e3fb979bf21ed2d8c5f7c29057182558a7113cbf459d9ccea8ad13ef65686b8b

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 56a7fa856bcdd49c45d1e3f86db7d36298a6b52ec5ed0a4ed3b8518e18588bda
MD5 029551db49d359c755541519e541191a
BLAKE2b-256 870fa304feb7715be69e2f4e95aaa527bfe96c6a0d25780bfea0c2441b49c119

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17757430f69b3fddc66fe7310c82f51cf982388f0c0404d212bc5e2bebdc6cee
MD5 02585bf76c18dcfe5ca47068017b349e
BLAKE2b-256 704b98c8ad63bdff33b842aaea5785fbcee138e9d7fb796ddaa1ec820af0b491

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 767f4d9dd36fc646b6fdab778a7e381abbfa9971e4a38eb8a3b344d872486d0e
MD5 b5711f54d121fa4fac36c233b04f776b
BLAKE2b-256 82357c19839699c3047436627df486283e8d87ca89ee4ca0cc7fe72b8ac2d9f9

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b3d5de8a658b766272b58db8da65130a236f7017655308ba6f46d3ec359584f2
MD5 83ae26d50be601a9404b1683b418f95d
BLAKE2b-256 efcababb02239cd54ed994b2c9e7c815d6eec851096d6746838977a8cd0b3b87

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.10-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.10-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 aca4342a37a884fc88a63da4c49f2daf26596fd98cf62a94091d8087a5f7aed0
MD5 6a23c3101003e2b506e934bcabc6f085
BLAKE2b-256 27b65f7cea3f31104f58b4f85687c468156b6afd3ccdc90d94fe5adff0966407

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page