LabelImg is a graphical image annotation tool and label object bounding boxes in images
Project description
LabelImg
========
.. image:: https://img.shields.io/pypi/v/labelimg.svg
:target: https://pypi.python.org/pypi/labelimg
.. image:: https://img.shields.io/travis/tzutalin/labelImg.svg
:target: https://travis-ci.org/tzutalin/labelImg
LabelImg is a graphical image annotation tool.
It is written in Python and uses Qt for its graphical interface.
Annotations are saved as XML files in PASCAL VOC format, the format used
by `ImageNet <http://www.image-net.org/>`__.
.. image:: https://raw.githubusercontent.com/tzutalin/labelImg/master/demo/demo3.jpg
:alt: Demo Image
`Watch a demo video <https://youtu.be/p0nR2YsCY_U>`__
Installation
------------------
Download prebuilt binaries
~~~~~~~~~~~~~~~~~~~~~~~~~~
- `Windows & Linux <http://tzutalin.github.io/labelImg/>`__
- OS X. Binaries for OS X are not yet available. Help would be appreciated. At present, it must be `built from source <#os-x>`__.
Build from source
~~~~~~~~~~~~~~~~~
Linux/Ubuntu/Mac requires at least `Python
2.6 <http://www.python.org/getit/>`__ and has been tested with `PyQt
4.8 <http://www.riverbankcomputing.co.uk/software/pyqt/intro>`__.
Ubuntu Linux
^^^^^^^^^^^^
Python 2 + Qt4
.. code::
sudo apt-get install pyqt4-dev-tools
sudo pip install lxml
make qt4py2
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
Python 3 + Qt5
.. code::
sudo apt-get install pyqt5-dev-tools
sudo pip3 install lxml
make qt5py3
python3 labelImg.py
python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
OS X
^^^^
Python 2 + Qt4
.. code::
brew install qt qt4
brew install libxml2
make qt4py2
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
Windows
^^^^^^^
Download and setup `Python 2.6 or
later <https://www.python.org/downloads/windows/>`__,
`PyQt4 <https://www.riverbankcomputing.com/software/pyqt/download>`__
and `install lxml <http://lxml.de/installation.html>`__.
Open cmd and go to `labelImg <#labelimg>`__ directory
.. code::
pyrcc4 -o resources.py resources.qrc
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
Get from PyPI
~~~~~~~~~~~~~~~~~
.. code::
pip install labelImg
labelImg
labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
I tested pip on Ubuntu14.04 and 16.04. However, I didn't test pip on MacOS and Windows
Use Docker
~~~~~~~~~~~~~~~~~
.. code::
docker run -it \
--user $(id -u) \
-e DISPLAY=unix$DISPLAY \
--workdir=$(pwd) \
--volume="/home/$USER:/home/$USER" \
--volume="/etc/group:/etc/group:ro" \
--volume="/etc/passwd:/etc/passwd:ro" \
--volume="/etc/shadow:/etc/shadow:ro" \
--volume="/etc/sudoers.d:/etc/sudoers.d:ro" \
-v /tmp/.X11-unix:/tmp/.X11-unix \
tzutalin/py2qt4
make qt4py2;./labelImg.py
You can pull the image which has all of the installed and required dependencies. `Watch a demo video <https://youtu.be/nw1GexJzbCI>`__
Usage
-----
Steps
~~~~~
1. Build and launch using the instructions above.
2. Click 'Change default saved annotation folder' in Menu/File
3. Click 'Open Dir'
4. Click 'Create RectBox'
5. Click and release left mouse to select a region to annotate the rect
box
6. You can use right mouse to drag the rect box to copy or move it
The annotation will be saved to the folder you specify.
You can refer to the below hotkeys to speed up your workflow.
Create pre-defined classes
~~~~~~~~~~~~~~~~~~~~~~~~~~
You can edit the
`data/predefined\_classes.txt <https://github.com/tzutalin/labelImg/blob/master/data/predefined_classes.txt>`__
to load pre-defined classes
Hotkeys
~~~~~~~
+------------+--------------------------------------------+
| Ctrl + u | Load all of the images from a directory |
+------------+--------------------------------------------+
| Ctrl + r | Change the default annotation target dir |
+------------+--------------------------------------------+
| Ctrl + s | Save |
+------------+--------------------------------------------+
| Ctrl + d | Copy the current label and rect box |
+------------+--------------------------------------------+
| Space | Flag the current image as verified |
+------------+--------------------------------------------+
| w | Create a rect box |
+------------+--------------------------------------------+
| d | Next image |
+------------+--------------------------------------------+
| a | Previous image |
+------------+--------------------------------------------+
| del | Delete the selected rect box |
+------------+--------------------------------------------+
| Ctrl++ | Zoom in |
+------------+--------------------------------------------+
| Ctrl-- | Zoom out |
+------------+--------------------------------------------+
| ↑→↓← | Keyboard arrows to move selected rect box |
+------------+--------------------------------------------+
How to contribute
~~~~~~~~~~~~~~~~~
Send a pull request
License
~~~~~~~
`Free software: MIT license <https://github.com/tzutalin/labelImg/blob/master/LICENSE>`_
Related
~~~~~~~
1. `ImageNet Utils <https://github.com/tzutalin/ImageNet_Utils>`__ to
download image, create a label text for machine learning, etc
2. `Docker hub to run it <https://hub.docker.com/r/tzutalin/py2qt4>`__
=======
History
=======
1.4.0 (2017-0-7)
------------------
* Add feature: auto saving
* Add feature: single class mode
* Fix the issues
1.3.4 (2017-07-7)
------------------
* Fix issues and improve zoom-in
1.3.3 (2017-05-31)
------------------
* Fix issues
1.3.2 (2017-05-18)
------------------
* Fix issues
1.3.1 (2017-05-11)
------------------
* Fix issues
1.3.0 (2017-04-22)
------------------
* Fix issues
* Add difficult tag
* Create new files for pypi
1.2.3 (2017-04-22)
------------------
* Fix issues
1.2.2 (2017-01-09)
------------------
* Fix issues
========
.. image:: https://img.shields.io/pypi/v/labelimg.svg
:target: https://pypi.python.org/pypi/labelimg
.. image:: https://img.shields.io/travis/tzutalin/labelImg.svg
:target: https://travis-ci.org/tzutalin/labelImg
LabelImg is a graphical image annotation tool.
It is written in Python and uses Qt for its graphical interface.
Annotations are saved as XML files in PASCAL VOC format, the format used
by `ImageNet <http://www.image-net.org/>`__.
.. image:: https://raw.githubusercontent.com/tzutalin/labelImg/master/demo/demo3.jpg
:alt: Demo Image
`Watch a demo video <https://youtu.be/p0nR2YsCY_U>`__
Installation
------------------
Download prebuilt binaries
~~~~~~~~~~~~~~~~~~~~~~~~~~
- `Windows & Linux <http://tzutalin.github.io/labelImg/>`__
- OS X. Binaries for OS X are not yet available. Help would be appreciated. At present, it must be `built from source <#os-x>`__.
Build from source
~~~~~~~~~~~~~~~~~
Linux/Ubuntu/Mac requires at least `Python
2.6 <http://www.python.org/getit/>`__ and has been tested with `PyQt
4.8 <http://www.riverbankcomputing.co.uk/software/pyqt/intro>`__.
Ubuntu Linux
^^^^^^^^^^^^
Python 2 + Qt4
.. code::
sudo apt-get install pyqt4-dev-tools
sudo pip install lxml
make qt4py2
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
Python 3 + Qt5
.. code::
sudo apt-get install pyqt5-dev-tools
sudo pip3 install lxml
make qt5py3
python3 labelImg.py
python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
OS X
^^^^
Python 2 + Qt4
.. code::
brew install qt qt4
brew install libxml2
make qt4py2
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
Windows
^^^^^^^
Download and setup `Python 2.6 or
later <https://www.python.org/downloads/windows/>`__,
`PyQt4 <https://www.riverbankcomputing.com/software/pyqt/download>`__
and `install lxml <http://lxml.de/installation.html>`__.
Open cmd and go to `labelImg <#labelimg>`__ directory
.. code::
pyrcc4 -o resources.py resources.qrc
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
Get from PyPI
~~~~~~~~~~~~~~~~~
.. code::
pip install labelImg
labelImg
labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
I tested pip on Ubuntu14.04 and 16.04. However, I didn't test pip on MacOS and Windows
Use Docker
~~~~~~~~~~~~~~~~~
.. code::
docker run -it \
--user $(id -u) \
-e DISPLAY=unix$DISPLAY \
--workdir=$(pwd) \
--volume="/home/$USER:/home/$USER" \
--volume="/etc/group:/etc/group:ro" \
--volume="/etc/passwd:/etc/passwd:ro" \
--volume="/etc/shadow:/etc/shadow:ro" \
--volume="/etc/sudoers.d:/etc/sudoers.d:ro" \
-v /tmp/.X11-unix:/tmp/.X11-unix \
tzutalin/py2qt4
make qt4py2;./labelImg.py
You can pull the image which has all of the installed and required dependencies. `Watch a demo video <https://youtu.be/nw1GexJzbCI>`__
Usage
-----
Steps
~~~~~
1. Build and launch using the instructions above.
2. Click 'Change default saved annotation folder' in Menu/File
3. Click 'Open Dir'
4. Click 'Create RectBox'
5. Click and release left mouse to select a region to annotate the rect
box
6. You can use right mouse to drag the rect box to copy or move it
The annotation will be saved to the folder you specify.
You can refer to the below hotkeys to speed up your workflow.
Create pre-defined classes
~~~~~~~~~~~~~~~~~~~~~~~~~~
You can edit the
`data/predefined\_classes.txt <https://github.com/tzutalin/labelImg/blob/master/data/predefined_classes.txt>`__
to load pre-defined classes
Hotkeys
~~~~~~~
+------------+--------------------------------------------+
| Ctrl + u | Load all of the images from a directory |
+------------+--------------------------------------------+
| Ctrl + r | Change the default annotation target dir |
+------------+--------------------------------------------+
| Ctrl + s | Save |
+------------+--------------------------------------------+
| Ctrl + d | Copy the current label and rect box |
+------------+--------------------------------------------+
| Space | Flag the current image as verified |
+------------+--------------------------------------------+
| w | Create a rect box |
+------------+--------------------------------------------+
| d | Next image |
+------------+--------------------------------------------+
| a | Previous image |
+------------+--------------------------------------------+
| del | Delete the selected rect box |
+------------+--------------------------------------------+
| Ctrl++ | Zoom in |
+------------+--------------------------------------------+
| Ctrl-- | Zoom out |
+------------+--------------------------------------------+
| ↑→↓← | Keyboard arrows to move selected rect box |
+------------+--------------------------------------------+
How to contribute
~~~~~~~~~~~~~~~~~
Send a pull request
License
~~~~~~~
`Free software: MIT license <https://github.com/tzutalin/labelImg/blob/master/LICENSE>`_
Related
~~~~~~~
1. `ImageNet Utils <https://github.com/tzutalin/ImageNet_Utils>`__ to
download image, create a label text for machine learning, etc
2. `Docker hub to run it <https://hub.docker.com/r/tzutalin/py2qt4>`__
=======
History
=======
1.4.0 (2017-0-7)
------------------
* Add feature: auto saving
* Add feature: single class mode
* Fix the issues
1.3.4 (2017-07-7)
------------------
* Fix issues and improve zoom-in
1.3.3 (2017-05-31)
------------------
* Fix issues
1.3.2 (2017-05-18)
------------------
* Fix issues
1.3.1 (2017-05-11)
------------------
* Fix issues
1.3.0 (2017-04-22)
------------------
* Fix issues
* Add difficult tag
* Create new files for pypi
1.2.3 (2017-04-22)
------------------
* Fix issues
1.2.2 (2017-01-09)
------------------
* Fix issues
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
labelImg-1.4.0.tar.gz
(350.8 kB
view details)
Built Distribution
labelImg-1.4.0-py2.7.egg
(311.4 kB
view details)
File details
Details for the file labelImg-1.4.0.tar.gz
.
File metadata
- Download URL: labelImg-1.4.0.tar.gz
- Upload date:
- Size: 350.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6458b0dcb3643964fb73fa4934442c7297dbedf0d86d3c167940e7a6b6abe288 |
|
MD5 | 09fdec4f41bd6717a4ecceb9bb33c24f |
|
BLAKE2b-256 | 0a4060caeb9149e26a3d7a44ad0d8e3ac8f41a0d15b98e41d9bcb5845ebb1c8a |
File details
Details for the file labelImg-1.4.0-py2.7.egg
.
File metadata
- Download URL: labelImg-1.4.0-py2.7.egg
- Upload date:
- Size: 311.4 kB
- Tags: Egg
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c7f57e7b3394933667e494844c48b0a431f3f747fd8132c1c90436be40f5eb2 |
|
MD5 | 2412bc36531284caf2243a92b483efdb |
|
BLAKE2b-256 | 1a69c2974bc9553a2b99b8cb12f4c3d16cf31dadb3451a1d4b7abe8e212e2d32 |