Convert labelme annotations into coco format in one step
Project description
labelme2coco
A lightweight package for converting your labelme annotations into COCO object detection format.
Convert LabelMe annotations to COCO format in one step
labelme is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats. However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations.
You can use this package to convert labelme annotations to COCO format.
Getting started
Installation
pip install -U labelme2coco
Basic Usage
labelme2coco path/to/labelme/dir
labelme2coco path/to/labelme/dir --train_split_rate 0.85
labelme2coco path/to/labelme/dir --category_id_start 1
Advanced Usage
# import package
import labelme2coco
# set directory that contains labelme annotations and image files
labelme_folder = "tests/data/labelme_annot"
# set export dir
export_dir = "tests/data/"
# set train split rate
train_split_rate = 0.85
# set category ID start value
category_id_start = 1
# convert labelme annotations to coco
labelme2coco.convert(labelme_folder, export_dir, train_split_rate, category_id_start=category_id_start)
# import functions
from labelme2coco import get_coco_from_labelme_folder, save_json
# set labelme training data directory
labelme_train_folder = "tests/data/labelme_annot"
# set labelme validation data directory
labelme_val_folder = "tests/data/labelme_annot"
# set path for coco json to be saved
export_dir = "tests/data/"
# set category ID start value
category_id_start = 1
# create train coco object
train_coco = get_coco_from_labelme_folder(labelme_train_folder, category_id_start=category_id_start)
# export train coco json
save_json(train_coco.json, export_dir+"train.json")
# create val coco object
val_coco = get_coco_from_labelme_folder(labelme_val_folder, coco_category_list=train_coco.json_categories, category_id_start=category_id_start)
# export val coco json
save_json(val_coco.json, export_dir+"val.json")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file labelme2coco-0.2.6.tar.gz.
File metadata
- Download URL: labelme2coco-0.2.6.tar.gz
- Upload date:
- Size: 18.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
25cb4b33e3de1d65763daa882e2bafc8091e3aa5cbf26fec386fa33941599db1
|
|
| MD5 |
16cf010885e1b68e4c5c72badce7038b
|
|
| BLAKE2b-256 |
9f1d75147adf0981f4be135c6f4c2ffa5cea41b78362a5f38f7ebbd092b05183
|
File details
Details for the file labelme2coco-0.2.6-py3-none-any.whl.
File metadata
- Download URL: labelme2coco-0.2.6-py3-none-any.whl
- Upload date:
- Size: 19.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9c86c1b4bcb2be5ca595af0ad9822445462414943ab9b2a251d29932534d5871
|
|
| MD5 |
13d350ab906e3edc1ef2a132297bc94d
|
|
| BLAKE2b-256 |
898b3366bc652e2bfcb6387280b45da534ef01d4b04f958de84acf4746665fba
|