Skip to main content

Zurich Instruments LabOne Q software framework for quantum computing control

Project description

LabOne Q logo

LabOne Q

LabOne Q is Zurich Instrument’s software framework to accelerate progress in quantum computing. Its Python-based, high-level programming interface enables users to concentrate on intuitive, efficient experiment design, while automatically accounting for their instrumentation details and maximizing useful computation time. Tight system integration between software and hardware ensures a seamless user experience from setups with a single qubit to those with 100 and more.

Requirements

⚠️ This software requires Python 3.9 or higher. We assume that pip and python use a corresponding Python version.

💡 To ease the maintenance of multiple installations, we recommended to use Python environments through e.g. venv, pipenv or conda.

Installation

The following commands will make the latest release of LabOne Q available in your current environment.

$ pip install --upgrade laboneq

Documentation

Find the LabOne Q Manual here: https://docs.zhinst.com/labone_q_user_manual/

Dive right into using LabOne Q and generate your first pulse sequence: https://docs.zhinst.com/labone_q_user_manual/getting_started/hello_world/

The API Documentation is published here: https://docs.zhinst.com/labone_q_user_manual/reference/simple/

Architecture

Overview of the LabOne Q Software Stack

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

laboneq-2.38.0-cp39-abi3-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9+ Windows x86-64

laboneq-2.38.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

laboneq-2.38.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

laboneq-2.38.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl (1.7 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ universal2 (ARM64, x86-64) macOS 10.12+ x86-64 macOS 11.0+ ARM64

File details

Details for the file laboneq-2.38.0-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: laboneq-2.38.0-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for laboneq-2.38.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 7e1f307eb0a47de52cfe370cbc35398432ebefa42060dcb9cbc5b37bbf33ec5d
MD5 88f1506a91314af08f7d82ded1fb7b77
BLAKE2b-256 0bf9b92efa69f48cf17cbda204fa137c689f0baad0b65855db3088035b4dde48

See more details on using hashes here.

File details

Details for the file laboneq-2.38.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laboneq-2.38.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7271ea530c27c32f460e1ea131be5902a57d6047558fed097b71145554fe5c73
MD5 e901d0a6d12ebbc26622391c144f62e6
BLAKE2b-256 33580d105dbfad62199ce95fdea27aa86cac7aea526ef5d3acbfa63b76f8a956

See more details on using hashes here.

File details

Details for the file laboneq-2.38.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laboneq-2.38.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fd3a763a3553ea19e2f2dc4b95b6358d0bd9031f2e5621500efcaec150ef00a7
MD5 8de9dfd79b40df73dfa8f8cf7c25a617
BLAKE2b-256 c9d8301b2576609738dd7f51c2a9b9a65408a7fe348532e668a318d02f14cc10

See more details on using hashes here.

File details

Details for the file laboneq-2.38.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for laboneq-2.38.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 6efd08c9964af8056c724e411cfaa950e5727392da81c52da198314f3efa5889
MD5 d50ffc5369e7542d0d16d377bccd73b0
BLAKE2b-256 6ffd1e76991f6e4210e02e36cd74f402d45359ddaef203adaafef04fbec3957b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page