Skip to main content

Zurich Instruments LabOne Q software framework for quantum computing control

Project description

LabOne Q logo

LabOne Q

LabOne Q is Zurich Instrument’s software framework to accelerate progress in quantum computing. Its Python-based, high-level programming interface enables users to concentrate on intuitive, efficient experiment design, while automatically accounting for their instrumentation details and maximizing useful computation time. Tight system integration between software and hardware ensures a seamless user experience from setups with a single qubit to those with 100 and more.

Requirements

⚠️ This software requires Python 3.9 or higher. We assume that pip and python use a corresponding Python version.

💡 To ease the maintenance of multiple installations, we recommended to use Python environments through e.g. venv, pipenv or conda.

Installation

The following commands will make the latest release of LabOne Q available in your current environment.

$ pip install --upgrade laboneq

Documentation

Find the LabOne Q Manual here: https://docs.zhinst.com/labone_q_user_manual/

Dive right into using LabOne Q and generate your first pulse sequence: https://docs.zhinst.com/labone_q_user_manual/getting_started/hello_world/

The API Documentation is published here: https://docs.zhinst.com/labone_q_user_manual/reference/simple/

Architecture

Overview of the LabOne Q Software Stack

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

laboneq-2.39.0-cp39-abi3-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9+ Windows x86-64

laboneq-2.39.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

laboneq-2.39.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

laboneq-2.39.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl (1.7 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ universal2 (ARM64, x86-64) macOS 10.12+ x86-64 macOS 11.0+ ARM64

File details

Details for the file laboneq-2.39.0-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: laboneq-2.39.0-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for laboneq-2.39.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 04f1af0deb55a60d60a3c2e0d79e50ebaab25ae056947862a7fe60c2d2f1f897
MD5 466b201cbdfdcb09a3f2b9abf94da7e7
BLAKE2b-256 cf66ee79729ab3d3b065796ab1f5e965ac7d49052431a96c8344e9f16071a984

See more details on using hashes here.

File details

Details for the file laboneq-2.39.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laboneq-2.39.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6dad614ec311d2fd896090b323f90f8e2f5c703bfb71be306346de4a44b9681
MD5 b8ab0667a48eeeeaa91c28674357be98
BLAKE2b-256 48cac2a2f1258a394279d05a45be15e1d28288e1f1ba1ffd052a31253bd39871

See more details on using hashes here.

File details

Details for the file laboneq-2.39.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laboneq-2.39.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 581b6d286230e36f0b5770e4067f90640076fd589fd5c0100564911c5fce1c33
MD5 26a852f63c64957a49b26c7b40248c8f
BLAKE2b-256 359d8993cc4ca52581ff86fa06b28acb748eb42b491bbec989e2dffcaed7e4a9

See more details on using hashes here.

File details

Details for the file laboneq-2.39.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for laboneq-2.39.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 c0adc606de3bbb8bc5d595dbbb239405b04b8da1a0082fef41fd8c2c278b98d4
MD5 da32bf91aa94713dc7cd4423c21db5a3
BLAKE2b-256 9dae93323235f1a77df003dfb29d28a0e23d68f129dc774d936dd17976feb680

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page