Skip to main content

Zurich Instruments LabOne Q software framework for quantum computing control

Project description

LabOne Q logo

LabOne Q

LabOne Q is Zurich Instrument’s software framework to accelerate progress in quantum computing. Its Python-based, high-level programming interface enables users to concentrate on intuitive, efficient experiment design, while automatically accounting for their instrumentation details and maximizing useful computation time. Tight system integration between software and hardware ensures a seamless user experience from setups with a single qubit to those with 100 and more.

Requirements

⚠️ This software requires Python 3.9 or higher. We assume that pip and python use a corresponding Python version.

💡 To ease the maintenance of multiple installations, we recommended to use Python environments through e.g. venv, pipenv or conda.

Installation

The following commands will make the latest release of LabOne Q available in your current environment.

$ pip install --upgrade laboneq

Documentation

Find the LabOne Q Manual here: https://docs.zhinst.com/labone_q_user_manual/

Dive right into using LabOne Q and generate your first pulse sequence: https://docs.zhinst.com/labone_q_user_manual/getting_started/hello_world/

The API Documentation is published here: https://docs.zhinst.com/labone_q_user_manual/reference/simple/

Architecture

Overview of the LabOne Q Software Stack

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

laboneq-2.41.0-cp39-abi3-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9+ Windows x86-64

laboneq-2.41.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

laboneq-2.41.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

laboneq-2.41.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl (2.0 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ universal2 (ARM64, x86-64) macOS 10.12+ x86-64 macOS 11.0+ ARM64

File details

Details for the file laboneq-2.41.0-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: laboneq-2.41.0-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for laboneq-2.41.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 3d114267da0acbcc47c5ffffeda27d7c1326c3b064698e723de7b8e9ea1d4c37
MD5 656fca8c100beb27e7af914455876e0f
BLAKE2b-256 b59ef7b593d4f0d6e2c9266da2ff470e5df89c38dfd7ca2764274fb2fc64b10e

See more details on using hashes here.

File details

Details for the file laboneq-2.41.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for laboneq-2.41.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f6c200fc50e5ee19cbacf6800ce0e6a7fdbbca8a33e87659b8f1ebae5235ce2
MD5 cc1eb0872ae86b881abc2640248aeca0
BLAKE2b-256 1efd1e603d1b336a1a862023c0be901231f5f92b6f5cda3f2c496a547866403e

See more details on using hashes here.

File details

Details for the file laboneq-2.41.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for laboneq-2.41.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0d0c40cd72eb69577aec43b73ae05bb5d7316e5950f26fb4c79633270c067f2
MD5 caef9dd162b5a6a0d79c90415300a03b
BLAKE2b-256 3459c03f371fee099161c9d63bc2cf41428a7346d65f8c9b4abef23dedb7d759

See more details on using hashes here.

File details

Details for the file laboneq-2.41.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for laboneq-2.41.0-cp39-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 ed93328d942846d4453d0bca621ad75e41fc4475db2b3b43b6450598ae69515c
MD5 3133d9dbde2cffb64984074d306fb3c7
BLAKE2b-256 4550a267a068eea6a21b85e6f4e64ffb782c48282c2610a95d6da469a54a1f61

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page