This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

A Python library for carefully refactoring critical paths (and a port of GitHub’s Scientist).

Why?

See GitHub’s blog post — http://githubengineering.com/scientist/

But how?

Imagine you’ve implemented a complex caching strategy for some objects in your database and a stale cache is simply not acceptable. How could you test this and ensure parity with your previous implementation, under load, with production data? Run it in production!

Laboratory will:

  • Run both the new and the old code
  • Compare their results
  • Record timing information about all code
  • Swallow and record exceptions in the new code
  • Publish all of this information

Of course, you’re still unsure your candidate code works correctly, so laboratory will always return the result from the control block.

import laboratory

experiment = laboratory.Experiment()
with experiment.control() as c:
    c.record(get_objects_from_database())

with experiment.candidate() as c:
    c.record(get_objects_from_cache())

objects = experiment.run()

Note that the Experiment class can also be used as a decorator.

@Experiment(candidate=get_objects_from_cache)
def get_objects_from_database():
    return True

Publishing results

This data is useless unless we can do something with it. Laboratory makes no assumptions about how to do this — it’s entirely for you to implement to suit your needs. For example, timing data can be sent to graphite, and mismatches can be placed in a capped collection in redis for debugging later.

The publish method is passed a Result instance, with control and candidate data is available in Result.control and Result.observations respectively.

class MyExperiment(laboratory.Experiment):
    def publish(self, result):
        statsd.timing('MyExperiment.control', result.control.duration)
        for o in result.observations:
            statsd.timing('MyExperiment.%s' % o.name, o.duration)

Controlling comparison

Not all data is created equal. By default laboratory compares using ==, but sometimes you may need to tweak this to suit your needs. It’s easy enough — just subclass Experiment and implement the compare(control, observation) method.

class MyExperiment(Experiment):
    def compare(self, control, observation):
        return control.value['id'] == observation.value['id']

Adding context

A lot of the time there’s going to be extra context around an experiment that’s useful to use in publishing or comparisons. You can set this data in a few ways.

# The first is experiment-wide context, which will be set on every observation laboratory makes.

experiment = laboratory.Experiment(name='Object Cache Experiment', context={'user': user})


# Observation-specific context can be updated before or as the experiment is running.

with experiment.control(name='Object DB Strategy', context={'using': 'db'}) as e:
    e.update_context({'uuid': uuid})

    e.get_context()
    # {
    #     'user': <User>,
    #     'uuid': 'c08d46f1-92a6-46e5-9185-82d90dcb5af1',
    #     'using': 'db',
    # }


with experiment.candidate(name='Object Cache Strategy', context={'using': 'cache'}) as e:
    e.update_context({'uuid': uuid})

    e.get_context()
    # {
    #     'user': <User>,
    #     'using': 'cache',
    # }

Context can be retrieved using the get_context method on Experiment and Observation classes.

class Experiment(laboratory.Experiment):

    def publish(self, result):
        self.get_context()
        result.control.get_context()
        result.observations[0].get_context()

Installation

Installing from pypi is recommended

$ pip install laboratory

Maintenance

Laboratory is actively maintained by Joe Alcorn (Github, Twitter)

Release History

Release History

0.4.1

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.4.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
laboratory-0.4.1-py2.py3-none-any.whl (8.2 kB) Copy SHA256 Checksum SHA256 2.7 Wheel May 12, 2016
laboratory-0.4.1.tar.gz (5.0 kB) Copy SHA256 Checksum SHA256 Source May 12, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting