Skip to main content

Tools that streamline your TensorFlow workflow.

Project description

LaminarFlow

Tools that streamline your TensorFlow workflow.

###TFRecord Datasets

LaminarFlow has two classes for writing to and reading from TFRecord datasets, DatasetWriter and DatasetReader.

When creating your datasets with DatasetWriter, you can pass in raw Python or Numpy data, and it will automatically get converted into tf.Examples or tf.SequenceExamples and be written to the TFRecord file.

Then when reading from the TFRecord file, DatasetReader takes care of creating the input pipeline that will parse your stored tf.Examples or tf.SequenceExamples, prepare them as needed (batching, padding, shuffling, etc.), then pass them to your TensorFlow Estimator.

The code looks like this. In this example, we'll train a model to predict an XOR circuit's output value. First, create your TFRecord datasets.

import laminarflow as lf

train_writer = lf.DatasetWriter('/tmp/train.tfrecord')
test_writer = lf.DatasetWriter('/tmp/test.tfrecord')

train_writer.write({
  'input': [3.1, 4.1, 5.9],
  'label': 2
})

train_writer.write({
  'input': [2.7, 1.8, 2.8],
  'label': 1
})

test_writer.write({
  'input': [0.1, 1.2, 3.5],
  'label': 8
})

train_writer.close()
test_writer.close()

Simply create a DatasetWriter, then call the write method on it, passing in a dictionary where the keys are the feature names and the values are the feature values. The values can be Numpy arrays or any values that can be converted into Numpy arrays, such as Python ints, floats, or lists of ints or floats.

When you are done writing data with a Writer, call the close() method on it.

The data will be written to a TFRecord file and the shapes and data types of your features will be stored in a separate metadata file (which will have the same filename as the TFRecord file, except the extension will be changed to '.json').

tmp/
├── test.json
├── test.tfrecord
├── train.json
└── train.tfrecord

Then you can train a model on your datasets.

train_dataset = lf.DatasetReader('/tmp/train.tfrecord')
test_dataset = lf.DatasetReader('/tmp/test.tfrecord')

estimator = tf.estimator.Estimator(
  model_fn=model_fn,
  model_dir=MODEL_DIR,
  params=PARAMS)

train_spec = tf.estimator.TrainSpec(
    input_fn=train_dataset.input_fn,
    max_steps=1000)

eval_spec = tf.estimator.EvalSpec(
    input_fn=test_dataset.input_fn)

tf.estimator.train_and_evaluate(
    estimator=estimator,
    train_spec=train_spec,
    eval_spec=eval_spec)

Calling lf.DatasetReader('/tmp/train.tfrecord') creates a dataset using the TFRecord file and its corresponding metadata JSON file. The path to the metadata JSON file /tmp/train.json is inferred from the TFRecord path.

The created dataset has an input_fn method that you can pass in as the input function to a TensorFlow Estimator. The input_fn method automatically creates the input pipeline for your dataset, implementing the recommended best practices as outlined in TensorFlow's Input Pipline Performance Guide.

Additional Features

You can create a DatasetWriter using a with statement, in which case you wouldn't have to explicitly call the close() method.

with lf.DatasetWriter('/tmp/train.tfrecord') as train_writer:
  train_writer.write({
    'input': [1.4, 1.4, 2.1],
    'label': 3
  })

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

laminarflow-0.0.3.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

laminarflow-0.0.3-py2.py3-none-any.whl (7.0 kB view details)

Uploaded Python 2Python 3

File details

Details for the file laminarflow-0.0.3.tar.gz.

File metadata

  • Download URL: laminarflow-0.0.3.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for laminarflow-0.0.3.tar.gz
Algorithm Hash digest
SHA256 47477ff8281232b96eff81c0b1c399e6b73df6cb7134ab37f9dab8f2f2ce41ab
MD5 22ac46296d34c78d09efac4c1e3117be
BLAKE2b-256 28588794d559b7dca3345f709714e2cba888bc7a3927f68d02c7910241f384fe

See more details on using hashes here.

File details

Details for the file laminarflow-0.0.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for laminarflow-0.0.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a4e7b6957749528c9ee0c590d4844af631904dce370484bbe76c976c00b7931d
MD5 1b1bc67598cb32757716cb9530a6f5d3
BLAKE2b-256 ac9c281311cf023ff46b0afc4d6637407e87593b0fb4325eab5c02e36bf79b5b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page