An integration package connecting Google's genai package and LangChain
Project description
langchain-google-genai
LangChain integration for Google Gemini models using the generative-ai
SDK
This package enables seamless access to Google Gemini's chat, vision, embeddings, and retrieval-augmented generation (RAG) features within the LangChain ecosystem.
Table of Contents
Overview
This package provides LangChain support for Google Gemini models (via the official Google Generative AI SDK). It supports:
- Text and vision-based chat models
- Embeddings for semantic search
- Multimodal inputs and outputs
- Retrieval-Augmented Generation (RAG)
- Thought tracing with reasoning tokens
Installation
pip install -U langchain-google-genai
Quickstart
Set up your environment variable with your Gemini API key:
export GOOGLE_API_KEY=your-api-key
Then use the ChatGoogleGenerativeAI
interface:
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro")
response = llm.invoke("Sing a ballad of LangChain.")
print(response.content)
Chat Models
The main interface for Gemini chat models is ChatGoogleGenerativeAI
.
Multimodal Inputs
Gemini vision models support image inputs in single messages.
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
message = HumanMessage(
content=[
{"type": "text", "text": "What's in this image?"},
{"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
]
)
response = llm.invoke([message])
print(response.content)
✅ image_url
can be:
- A public image URL
- A Google Cloud Storage path (
gcs://...
) - A base64-encoded image (e.g.,
data:image/png;base64,...
)
Multimodal Outputs
The Gemini 2.0 Flash Experimental model supports both text and inline image outputs.
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="models/gemini-2.0-flash-exp-image-generation")
response = llm.invoke(
"Generate an image of a cat and say meow",
generation_config=dict(response_modalities=["TEXT", "IMAGE"]),
)
image_base64 = response.content[0].get("image_url").get("url").split(",")[-1]
meow_text = response.content[1]
print(meow_text)
Audio Output
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="models/gemini-2.5-flash-preview-tts")
# example
response = llm.invoke(
"Please say The quick brown fox jumps over the lazy dog",
generation_config=dict(response_modalities=["AUDIO"]),
)
# Base64 encoded binary data of the image
wav_data = response.additional_kwargs.get("audio")
with open("output.wav", "wb") as f:
f.write(wav_data)
Multimodal Outputs in Chains
You can use Gemini models in a LangChain chain:
from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import ChatPromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI, Modality
llm = ChatGoogleGenerativeAI(
model="models/gemini-2.0-flash-exp-image-generation",
response_modalities=[Modality.TEXT, Modality.IMAGE],
)
prompt = ChatPromptTemplate.from_messages([
("human", "Generate an image of {animal} and tell me the sound it makes.")
])
chain = {"animal": RunnablePassthrough()} | prompt | llm
response = chain.invoke("cat")
Thinking Support
Gemini 2.5 Flash Preview supports internal reasoning ("thoughts").
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(
model="models/gemini-2.5-flash-preview-04-17",
thinking_budget=1024
)
response = llm.invoke("How many O's are in Google? How did you verify your answer?")
reasoning_score = response.usage_metadata["output_token_details"]["reasoning"]
print("Response:", response.content)
print("Reasoning tokens used:", reasoning_score)
Embeddings
You can use Gemini embeddings in LangChain:
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
vector = embeddings.embed_query("hello, world!")
print(vector)
Semantic Retrieval (RAG)
Use Gemini with RAG to retrieve relevant documents from your knowledge base.
from langchain_google_genai.vectorstores import GoogleVectorStore
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import DirectoryLoader
# Create a corpus (collection of documents)
corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")
# Create a document under that corpus
document_store = GoogleVectorStore.create_document(
corpus_id=corpus_store.corpus_id, display_name="My Document"
)
# Load and upload documents
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
for file in DirectoryLoader(path="data/").load():
chunks = text_splitter.split_documents([file])
document_store.add_documents(chunks)
# Query the document corpus
aqa = corpus_store.as_aqa()
response = aqa.invoke("What is the meaning of life?")
print("Answer:", response.answer)
print("Passages:", response.attributed_passages)
print("Answerable probability:", response.answerable_probability)
Resources
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file langchain_google_genai-2.1.6.tar.gz
.
File metadata
- Download URL: langchain_google_genai-2.1.6.tar.gz
- Upload date:
- Size: 43.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
d95dc098f14b9e0e5f9990b3a1533d6e7cc77520bd26855f917ddf79d41b2f73
|
|
MD5 |
ee2b23c2a02db80e540ee03d8249acf4
|
|
BLAKE2b-256 |
c8e49a955f0c0d550811708f47fa71752c81c9871725c40d5d0d3ba29ed76294
|
File details
Details for the file langchain_google_genai-2.1.6-py3-none-any.whl
.
File metadata
- Download URL: langchain_google_genai-2.1.6-py3-none-any.whl
- Upload date:
- Size: 47.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
2fba640cb4e86c2f2111deb6964e0918d0c4f4f1cedc1a28c4221ca3c1ec9bea
|
|
MD5 |
538c3eed79dbf03869d2931d87fadc4b
|
|
BLAKE2b-256 |
fab90ae7d6f8e38c426ba52b658ce41483ab26ee8bc838fd2c151dc9567c809a
|