An integration package connecting Google's genai package and LangChain
Project description
langchain-google-genai
This package contains the LangChain integrations for Gemini through their generative-ai SDK.
Installation
pip install -U langchain-google-genai
Chat Models
This package contains the ChatGoogleGenerativeAI
class, which is the recommended way to interface with the Google Gemini series of models.
To use, install the requirements, and configure your environment.
export GOOGLE_API_KEY=your-api-key
Then initialize
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")
Multimodal inputs
Gemini vision model supports image inputs when providing a single chat message. Example:
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
# example
message = HumanMessage(
content=[
{
"type": "text",
"text": "What's in this image?",
}, # You can optionally provide text parts
{"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
]
)
llm.invoke([message])
The value of image_url
can be any of the following:
- A public image URL
- An accessible gcs file (e.g., "gcs://path/to/file.png")
- A base64 encoded image (e.g.,

)
Multimodal outputs
Gemini 2.0 Flash Experimental model supports text output with inline images
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="models/gemini-2.0-flash-exp-image-generation")
# example
response = llm.invoke(
"Generate an image of a cat and say meow",
generation_config=dict(response_modalities=["TEXT", "IMAGE"]),
)
# Base64 encoded binary data of the image
image_base64 = response.content[0].get("image_url").get("url").split(",")[-1]
meow_str = response.content[1]
Multimodal Outputs in Chains
from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import ChatPromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI, Modality
llm = ChatGoogleGenerativeAI(
model="models/gemini-2.0-flash-exp-image-generation",
response_modalities=[Modality.TEXT, Modality.IMAGE],
)
prompt = ChatPromptTemplate(
[("human", "Generate an image of {animal} and tell me the sound of the animal")]
)
chain = {"animal": RunnablePassthrough()} | prompt | llm
res = chain.invoke("cat")
Thinking support
Gemini 2.5 Flash model supports reasoning through their thoughts
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="models/gemini-2.5-flash-preview-04-17", thinking_budget=1024)
response = llm.invoke(
"How many O's are in Google? Please tell me how you double checked the result"
)
assert response.usage_metadata["output_token_details"]["reasoning"] > 0
Embeddings
This package also adds support for google's embeddings models.
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("hello, world!")
Semantic Retrieval
Enables retrieval augmented generation (RAG) in your application.
# Create a new store for housing your documents.
corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")
# Create a new document under the above corpus.
document_store = GoogleVectorStore.create_document(
corpus_id=corpus_store.corpus_id, display_name="My Document"
)
# Upload some texts to the document.
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
for file in DirectoryLoader(path="data/").load():
documents = text_splitter.split_documents([file])
document_store.add_documents(documents)
# Talk to your entire corpus with possibly many documents.
aqa = corpus_store.as_aqa()
answer = aqa.invoke("What is the meaning of life?")
# Read the response along with the attributed passages and answerability.
print(response.answer)
print(response.attributed_passages)
print(response.answerable_probability)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file langchain_google_genai-2.1.4.tar.gz
.
File metadata
- Download URL: langchain_google_genai-2.1.4.tar.gz
- Upload date:
- Size: 40.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b52e10ea3daf1a65f70b73c78b78235466593de2aa9f4119fa887b804605efb7 |
|
MD5 | 814ba1050d8f9041a81c6c4cf6e6a1e3 |
|
BLAKE2b-256 | 814873cb0a186f028a3597a825c930957a032895960381af505fa93805fe1736 |
File details
Details for the file langchain_google_genai-2.1.4-py3-none-any.whl
.
File metadata
- Download URL: langchain_google_genai-2.1.4-py3-none-any.whl
- Upload date:
- Size: 44.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.12.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a3fa3cf7fe9c1de77280f42fbdd22cfcc5fbeb0d60cd5be7a0e6c50a74f5ce73 |
|
MD5 | 611259c6b4716b8eeffcfc548c8c9cda |
|
BLAKE2b-256 | 07122be71bebbc23e4a499c50df567017110e4d382a045422647c8e6b1040541 |