Skip to main content

An integration package connecting Google's genai package and LangChain

Project description

langchain-google-genai

This package contains the LangChain integrations for Gemini through their generative-ai SDK.

Installation

pip install -U langchain-google-genai

Image utilities

To use image utility methods, like loading images from GCS urls, install with extras group 'images':

pip install -e "langchain-google-genai[images]"

Chat Models

This package contains the ChatGoogleGenerativeAI class, which is the recommended way to interface with the Google Gemini series of models.

To use, install the requirements, and configure your environment.

export GOOGLE_API_KEY=your-api-key

Then initialize

from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )
  • A PIL image

Embeddings

This package also adds support for google's embeddings models.

from langchain_google_genai import GoogleGenerativeAIEmbeddings

embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("hello, world!")

Semantic Retrieval

Enables retrieval augmented generation (RAG) in your application.

# Create a new store for housing your documents.
corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")

# Create a new document under the above corpus.
document_store = GoogleVectorStore.create_document(
    corpus_id=corpus_store.corpus_id, display_name="My Document"
)

# Upload some texts to the document.
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
for file in DirectoryLoader(path="data/").load():
    documents = text_splitter.split_documents([file])
    document_store.add_documents(documents)

# Talk to your entire corpus with possibly many documents. 
aqa = corpus_store.as_aqa()
answer = aqa.invoke("What is the meaning of life?")

# Read the response along with the attributed passages and answerability.
print(response.answer)
print(response.attributed_passages)
print(response.answerable_probability)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_genai-1.0.10.tar.gz (35.2 kB view details)

Uploaded Source

Built Distribution

langchain_google_genai-1.0.10-py3-none-any.whl (39.4 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_genai-1.0.10.tar.gz.

File metadata

File hashes

Hashes for langchain_google_genai-1.0.10.tar.gz
Algorithm Hash digest
SHA256 d4465aaf50825c78663618259ceca60a323d33b1a09a791631ddc7bd4806f4ce
MD5 774a0d84cd2a2d4d120f08c6dab971cf
BLAKE2b-256 f85eaec27b71372874a3ef21656bd9876c416615b864dae08f9d6e9259ed24e3

See more details on using hashes here.

File details

Details for the file langchain_google_genai-1.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_genai-1.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 333f5e10ebde45b519b7816d7129cb73c5f5e6ab0df9960fa2c9f339fe9d9068
MD5 7bcee50bb6b1ee05fdb15e0aad0c6734
BLAKE2b-256 e6814dce584a25826945ee092c5a1ae56d6efdca73c108b46e7887670d3fe7a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page