Skip to main content

An integration package connecting Google's genai package and LangChain

Project description

langchain-google-genai

This package contains the LangChain integrations for Gemini through their generative-ai SDK.

Installation

pip install -U langchain-google-genai

Image utilities

To use image utility methods, like loading images from GCS urls, install with extras group 'images':

pip install -e "langchain-google-genai[images]"

Chat Models

This package contains the ChatGoogleGenerativeAI class, which is the recommended way to interface with the Google Gemini series of models.

To use, install the requirements, and configure your environment.

export GOOGLE_API_KEY=your-api-key

Then initialize

from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )
  • A PIL image

Embeddings

This package also adds support for google's embeddings models.

from langchain_google_genai import GoogleGenerativeAIEmbeddings

embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("hello, world!")

Semantic Retrieval

Enables retrieval augmented generation (RAG) in your application.

# Create a new store for housing your documents.
corpus_store = GoogleVectorStore.create_corpus(display_name="My Corpus")

# Create a new document under the above corpus.
document_store = GoogleVectorStore.create_document(
    corpus_id=corpus_store.corpus_id, display_name="My Document"
)

# Upload some texts to the document.
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
for file in DirectoryLoader(path="data/").load():
    documents = text_splitter.split_documents([file])
    document_store.add_documents(documents)

# Talk to your entire corpus with possibly many documents. 
aqa = corpus_store.as_aqa()
answer = aqa.invoke("What is the meaning of life?")

# Read the response along with the attributed passages and answerability.
print(response.answer)
print(response.attributed_passages)
print(response.answerable_probability)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_genai-2.0.0.tar.gz (35.3 kB view details)

Uploaded Source

Built Distribution

langchain_google_genai-2.0.0-py3-none-any.whl (39.5 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_genai-2.0.0.tar.gz.

File metadata

File hashes

Hashes for langchain_google_genai-2.0.0.tar.gz
Algorithm Hash digest
SHA256 50c9381a01073bba5eeddfe229d35bbf9e9c9f593f7413f2aa0cb6b44a861ac0
MD5 5692ba4d917b9ad1b054dab5154fa55a
BLAKE2b-256 de110f746d9710f129d891b8f341619dda41e9af17775f85c5ee91fb5572640f

See more details on using hashes here.

File details

Details for the file langchain_google_genai-2.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_genai-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2cfa264837d1a6382d60a34588aee26a494b1904d39843b29312abde6226efd2
MD5 0ef320299cefb0c44fed9405cef2192d
BLAKE2b-256 cc55713046838839ff9636a98d3a941e9b840a00823794f5d3c627cbd6404a00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page