An integration package connecting Litellm and LangChain
Project description
| 📦 Distribution | 🔧 Project | 🚀 Activity |
|---|---|---|
|
|
|
|
langchain-litellm
This package contains the LangChain integration with LiteLLM. LiteLLM is a library that simplifies calling Anthropic, Azure, Huggingface, Replicate, etc.
Installation and setup
pip install -U langchain-litellm
Chat Models
from langchain_litellm import ChatLiteLLM
from langchain_litellm import ChatLiteLLMRouter
See a usage example
Advanced Features
Vertex AI Grounding (Google Search)
Supported in v0.3.5+
You can use Google Search grounding with Vertex AI models (e.g., gemini-2.5-flash). Citations and metadata are returned in response_metadata (Batch) or additional_kwargs (Streaming).
Setup
import os
from langchain_litellm import ChatLiteLLM
os.environ["VERTEX_PROJECT"] = "your-project-id"
os.environ["VERTEX_LOCATION"] = "us-central1"
llm = ChatLiteLLM(model="vertex_ai/gemini-2.5-flash", temperature=0)
Batch Usage
# Invoke with Google Search tool enabled
response = llm.invoke(
"What is the current stock price of Google?",
tools=[{"googleSearch": {}}]
)
# Access Citations & Metadata
provider_fields = response.response_metadata.get("provider_specific_fields")
if provider_fields:
# Vertex returns a list; the first item contains the grounding info
print(provider_fields[0])
Streaming Usage
stream = llm.stream(
"What is the current stock price of Google?",
tools=[{"googleSearch": {}}]
)
for chunk in stream:
print(chunk.content, end="", flush=True)
# Metadata is injected into the chunk where it arrives
if "provider_specific_fields" in chunk.additional_kwargs:
print("\n[Metadata Found]:", chunk.additional_kwargs["provider_specific_fields"])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file langchain_litellm-0.5.1.tar.gz.
File metadata
- Download URL: langchain_litellm-0.5.1.tar.gz
- Upload date:
- Size: 18.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/2.3.2 CPython/3.14.2 Linux/6.11.0-1018-azure
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1af5743c424456ce12c59cbf08b4774fbc9025124b6de8249713864242db57e1
|
|
| MD5 |
2242df7b0a55f907bcf656ac1564c338
|
|
| BLAKE2b-256 |
b1fa088dd2e3426aa413991afb67aef4c4e79ff3c0e4c25f753842bfaf4ec43f
|
File details
Details for the file langchain_litellm-0.5.1-py3-none-any.whl.
File metadata
- Download URL: langchain_litellm-0.5.1-py3-none-any.whl
- Upload date:
- Size: 20.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/2.3.2 CPython/3.14.2 Linux/6.11.0-1018-azure
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3726c050eaaeb0b8aad0c8ceefae549917b185d176859866375f97d1d0ed6748
|
|
| MD5 |
a01e7be3e753c22cad1fab4794d71ec7
|
|
| BLAKE2b-256 |
b96f84c8cef2cd5a20e94222de93cc57645102087dff616d5054755b97db51b1
|