Skip to main content

An integration package connecting Memgraph and LangChain

Project description

🦜️🔗 LangChain Memgraph

This package contains the LangChain integration with Memgraph graph database.

📦 Installation

In order to start running the examples or tests you need to install the LangChain integration.

You can do it via pip:

pip install -U langchain-memgraph

Before running the examples below, make sure to start Memgraph, you can do it via following command:

docker run -p 7687:7687 \
  --name memgraph \
  memgraph/memgraph-mage:latest \
  --schema-info-enabled=true

💻 Integration features

Memgraph

The Memgraph class is a wrapper around the database client that supports the query operation.

import os
from langchain_memgraph.graphs.memgraph import MemgraphLangChain

url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")

graph = MemgraphLangChain(url=url, username=username, password=password)
results = graph.query("MATCH (n) RETURN n LIMIT 1")
print(results)

MemgraphQAChain

The MemgraphQAChain class enables natural language interactions with a Memgraph database. It uses an LLM and the database's schema to translate a user's question into a Cypher query, which is executed against the database. The resulting data is then sent along with the user's question to the LLM to generate a natural language response.

For the example below you need to install an extra dependency the lanchain_openai, you can do it by running:

pip install lanchain_openai
import os
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
from langchain_memgraph.chains.graph_qa import MemgraphQAChain
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")

graph = MemgraphLangChain(url=url, username=username, password=password, refresh_schema=False)

chain = MemgraphQAChain.from_llm(
    ChatOpenAI(temperature=0),
    graph=graph,
    model_name="gpt-4-turbo",
    allow_dangerous_requests=True,
)
response = chain.invoke("Is there a any Person node in the dataset?")
result = response["result"].lower()
print(result)

Memgraph toolkit

The MemgraphToolkit contains different tools agents can leverage to perform specific tasks the user has given them. Toolkit needs a database object and LLM access since different tools leverage different operations.

Currently supported tools:

  1. QueryMemgraphTool - Basic Cypher query execution tool
import os
import pytest
from dotenv import load_dotenv
from langchain.chat_models import init_chat_model
from langchain_memgraph import MemgraphToolkit
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
from langgraph.prebuilt import create_react_agent

os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")

llm = init_chat_model("gpt-4o-mini", model_provider="openai")

db = MemgraphLangChain(url=url, username=username, password=password)
toolkit = MemgraphToolkit(db=db, llm=llm)

agent_executor = create_react_agent(
    llm, toolkit.get_tools(), prompt="You will get a cypher query, try to execute it on the Memgraph database."
)

example_query = "MATCH (n) WHERE n.name = 'Jon Snow' RETURN n"
events = agent_executor.stream(
    {"messages": [("user", example_query)]},
    stream_mode="values",
)

last_event = None
for event in events:
    last_event = event
    event["messages"][-1].pretty_print()

print(last_event)

🧪 Test

Install the test dependencies to run the tests:

  1. Install dependencies
poetry install --with test,test_integration
  1. Start Memgraph in the background.
  2. Create an .env file that points to Memgraph and OpenAI API
MEMGRAPH_URL=bolt://localhost:7687
MEMGRAPH_USER=
MEMGRAPH_PASSWORD=
OPENAI_API_KEY=your_openai_api_key

Run tests

Run the unit tests using:

make tests

Run the integration test using:

make integration_tests

🧹 Code Formatting and Linting

Install the codespell, lint, and typing dependencies to lint and format your code:

poetry install --with codespell,lint,typing

To format your code, run:

make format

To lint it, run:

make lint

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_memgraph-0.1.12.tar.gz (208.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

langchain_memgraph-0.1.12-py3-none-any.whl (20.5 kB view details)

Uploaded Python 3

File details

Details for the file langchain_memgraph-0.1.12.tar.gz.

File metadata

  • Download URL: langchain_memgraph-0.1.12.tar.gz
  • Upload date:
  • Size: 208.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.6.5

File hashes

Hashes for langchain_memgraph-0.1.12.tar.gz
Algorithm Hash digest
SHA256 db7f5cc88a4e74c7b17c41e5abed4bdbf47dd2557ea3f77f8295ce85b848e212
MD5 4acd5e99b739ee656e72b5a42f256302
BLAKE2b-256 1e824cf8b01654ac848741be51b4184d35bb022fdc30eaf266638c91ffffc3e5

See more details on using hashes here.

File details

Details for the file langchain_memgraph-0.1.12-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_memgraph-0.1.12-py3-none-any.whl
Algorithm Hash digest
SHA256 b210bd192bf896023bb1e156cec580f9efda280019c134af7ab37a3710f2fc98
MD5 6e516258d7bbe5ef61356e6d559d3ebe
BLAKE2b-256 3f9916f4507717698478854b4c686dcd882bedfed68e19e88fa397d066af62e1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page