Skip to main content

An integration package connecting Memgraph and LangChain

Project description

🦜️🔗 LangChain Memgraph

This package contains the LangChain integration with Memgraph graph database.

📦 Installation

In order to start running the examples or tests you need to install the LangChain integration.

You can do it via pip:

pip install -U langchain-memgraph

Before running the examples below, make sure to start Memgraph, you can do it via following command:

docker run -p 7687:7687 \
  --name memgraph \
  memgraph/memgraph-mage:latest \
  --schema-info-enabled=true

💻 Integration features

Memgraph

The Memgraph class is a wrapper around the database client that supports the query operation.

import os
from langchain_memgraph.graphs.memgraph import MemgraphLangChain

url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")

graph = MemgraphLangChain(url=url, username=username, password=password)
results = graph.query("MATCH (n) RETURN n LIMIT 1")
print(results)

MemgraphQAChain

The MemgraphQAChain class enables natural language interactions with a Memgraph database. It uses an LLM and the database's schema to translate a user's question into a Cypher query, which is executed against the database. The resulting data is then sent along with the user's question to the LLM to generate a natural language response.

For the example below you need to install an extra dependency the lanchain_openai, you can do it by running:

pip install lanchain_openai
import os
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
from langchain_memgraph.chains.graph_qa import MemgraphQAChain
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")

graph = MemgraphLangChain(url=url, username=username, password=password, refresh_schema=False)

chain = MemgraphQAChain.from_llm(
    ChatOpenAI(temperature=0),
    graph=graph,
    model_name="gpt-4-turbo",
    allow_dangerous_requests=True,
)
response = chain.invoke("Is there a any Person node in the dataset?")
result = response["result"].lower()
print(result)

Memgraph toolkit

The MemgraphToolkit contains different tools agents can leverage to perform specific tasks the user has given them. Toolkit needs a database object and LLM access since different tools leverage different operations.

Currently supported tools:

  1. QueryMemgraphTool - Basic Cypher query execution tool
import os
import pytest
from dotenv import load_dotenv
from langchain.chat_models import init_chat_model
from langchain_memgraph import MemgraphToolkit
from langchain_memgraph.graphs.memgraph import MemgraphLangChain
from langgraph.prebuilt import create_react_agent

os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URL", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USER", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")

llm = init_chat_model("gpt-4o-mini", model_provider="openai")

db = MemgraphLangChain(url=url, username=username, password=password)
toolkit = MemgraphToolkit(db=db, llm=llm)

agent_executor = create_react_agent(
    llm, toolkit.get_tools(), prompt="You will get a cypher query, try to execute it on the Memgraph database."
)

example_query = "MATCH (n) WHERE n.name = 'Jon Snow' RETURN n"
events = agent_executor.stream(
    {"messages": [("user", example_query)]},
    stream_mode="values",
)

last_event = None
for event in events:
    last_event = event
    event["messages"][-1].pretty_print()

print(last_event)

🧪 Test

Install the test dependencies to run the tests:

  1. Install dependencies
poetry install --with test,test_integration
  1. Start Memgraph in the background.
  2. Create an .env file that points to Memgraph and OpenAI API
MEMGRAPH_URL=bolt://localhost:7687
MEMGRAPH_USER=
MEMGRAPH_PASSWORD=
OPENAI_API_KEY=your_openai_api_key

Run tests

Run the unit tests using:

make tests

Run the integration test using:

make integration_tests

🧹 Code Formatting and Linting

Install the codespell, lint, and typing dependencies to lint and format your code:

poetry install --with codespell,lint,typing

To format your code, run:

make format

To lint it, run:

make lint

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_memgraph-0.1.5.tar.gz (146.3 kB view details)

Uploaded Source

Built Distribution

langchain_memgraph-0.1.5-py3-none-any.whl (20.1 kB view details)

Uploaded Python 3

File details

Details for the file langchain_memgraph-0.1.5.tar.gz.

File metadata

  • Download URL: langchain_memgraph-0.1.5.tar.gz
  • Upload date:
  • Size: 146.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.6.5

File hashes

Hashes for langchain_memgraph-0.1.5.tar.gz
Algorithm Hash digest
SHA256 8b6c674d12024ae6752f049f7b079490e23cfc72f8f85af0fa1ad260460d1e55
MD5 846f0457617f8c095c9f1a581ded9dda
BLAKE2b-256 2d0cd6f8077d021844b3e4384d30886f652d0a3ae8234a6d1b50f667cca24684

See more details on using hashes here.

File details

Details for the file langchain_memgraph-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_memgraph-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 793f2e004b4dd54670478e66a7160c8bcfb902dcd0598ddf3e67667b95c8acd7
MD5 1d1d70356db5894c9dccc24eb8cef331
BLAKE2b-256 d708a965c15fb9840155ce560322408cc77f3ac07627fcbb470c5829e8f57640

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page