Skip to main content

An integration package connecting Redis and LangChain for AI working memory

Project description

langchain-redis

This package contains the LangChain integration with Redis, providing powerful tools for vector storage, semantic caching, and chat history management.

Installation

pip install -U langchain-redis

This will install the package along with its dependencies, including redis, redisvl, and ulid.

Configuration

To use this package, you need to have a Redis instance running. You can configure the connection by setting the following environment variable:

export REDIS_URL="redis://username:password@localhost:6379"

Alternatively, you can pass the Redis URL directly when initializing the components or use the RedisConfig class for more detailed configuration.

Redis Connection Options

This package supports various Redis deployment modes through different connection URL schemes:

Standard Redis Connection

# Standard Redis
redis_url = "redis://localhost:6379"

# Redis with authentication
redis_url = "redis://username:password@localhost:6379"

# Redis SSL/TLS
redis_url = "rediss://localhost:6380"

Redis Sentinel Connection

Redis Sentinel provides high availability for Redis. You can connect to a Sentinel-managed Redis deployment using the redis+sentinel:// URL scheme:

# Single Sentinel node
redis_url = "redis+sentinel://sentinel-host:26379/mymaster"

# Multiple Sentinel nodes (recommended for high availability)
redis_url = "redis+sentinel://sentinel1:26379,sentinel2:26379,sentinel3:26379/mymaster"

# Sentinel with authentication
redis_url = "redis+sentinel://username:password@sentinel1:26379,sentinel2:26379/mymaster"

The Sentinel URL format is: redis+sentinel://[username:password@]host1:port1[,host2:port2,...]/service_name

Where:

  • host:port - One or more Sentinel node addresses
  • service_name - The name of the Redis master service (e.g., "mymaster")

Example using Sentinel with RedisVectorStore:

from langchain_redis import RedisVectorStore, RedisConfig
from langchain_openai import OpenAIEmbeddings

config = RedisConfig(
    redis_url="redis+sentinel://sentinel1:26379,sentinel2:26379/mymaster",
    index_name="my_index"
)

vector_store = RedisVectorStore(
    embeddings=OpenAIEmbeddings(),
    config=config
)

Example using Sentinel with RedisCache:

from langchain_redis import RedisCache

cache = RedisCache(
    redis_url="redis+sentinel://sentinel1:26379,sentinel2:26379/mymaster",
    ttl=3600
)

Example using Sentinel with RedisChatMessageHistory:

from langchain_redis import RedisChatMessageHistory

history = RedisChatMessageHistory(
    session_id="user_123",
    redis_url="redis+sentinel://sentinel1:26379,sentinel2:26379/mymaster"
)

Features

1. Vector Store

The RedisVectorStore class provides a vector database implementation using Redis.

Usage

from langchain_redis import RedisVectorStore, RedisConfig
from langchain_core.embeddings import Embeddings

embeddings = Embeddings()  # Your preferred embedding model

config = RedisConfig(
    index_name="my_vectors",
    redis_url="redis://localhost:6379",
    distance_metric="COSINE"  # Options: COSINE, L2, IP
)

vector_store = RedisVectorStore(embeddings, config=config)

# Adding documents
texts = ["Document 1 content", "Document 2 content"]
metadatas = [{"source": "file1"}, {"source": "file2"}]
vector_store.add_texts(texts, metadatas=metadatas)

# Adding documents with custom keys
custom_keys = ["doc1", "doc2"]
vector_store.add_texts(texts, metadatas=metadatas, keys=custom_keys)

# Similarity search
query = "Sample query"
docs = vector_store.similarity_search(query, k=2)

# Similarity search with score
docs_and_scores = vector_store.similarity_search_with_score(query, k=2)

# Similarity search with filtering
filter_expr = Tag("category") == "science"
filtered_docs = vector_store.similarity_search(query, k=2, filter=filter_expr)

# Maximum marginal relevance search
docs = vector_store.max_marginal_relevance_search(query, k=2, fetch_k=10)

Features

  • Efficient vector storage and retrieval
  • Support for metadata filtering
  • Multiple distance metrics: Cosine similarity, L2, and Inner Product
  • Maximum marginal relevance search
  • Custom key support for document indexing

2. Cache

The RedisCache and RedisSemanticCache classes provide caching mechanisms for LLM calls.

Usage

from langchain_redis import RedisCache, RedisSemanticCache
from langchain_core.language_models import LLM
from langchain_core.embeddings import Embeddings

# Standard cache
cache = RedisCache(redis_url="redis://localhost:6379", ttl=3600)

# Semantic cache
embeddings = Embeddings()  # Your preferred embedding model
semantic_cache = RedisSemanticCache(
    redis_url="redis://localhost:6379",
    embedding=embeddings,
    distance_threshold=0.1
)

# Using cache with an LLM
llm = LLM(cache=cache)  # or LLM(cache=semantic_cache)

# Async cache operations
await cache.aupdate("prompt", "llm_string", [Generation(text="cached_response")])
cached_result = await cache.alookup("prompt", "llm_string")

Features

  • Efficient caching of LLM responses
  • TTL support for automatic cache expiration
  • Semantic caching for similarity-based retrieval
  • Asynchronous cache operations

3. Chat History

The RedisChatMessageHistory class provides a Redis-based storage for chat message history with efficient search capabilities.

Usage

from langchain_redis import RedisChatMessageHistory
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage

# Initialize with optional TTL (time-to-live) in seconds
history = RedisChatMessageHistory(
    session_id="user_123",
    redis_url="redis://localhost:6379",
    ttl=3600,  # Messages will expire after 1 hour
)

# Adding messages
history.add_message(HumanMessage(content="Hello, AI!"))
history.add_message(AIMessage(content="Hello, human! How can I assist you today?"))
history.add_message(SystemMessage(content="This is a system message"))

# Retrieving all messages in chronological order
messages = history.messages

# Searching messages with full-text search
results = history.search_messages("assist", limit=5)  # Returns matching messages

# Get message count
message_count = len(history)

# Clear history for current session
history.clear()

# Delete all sessions and index (use with caution)
history.delete()

Features

  • Fast storage of chat messages with automatic expiration (TTL)
  • Support for different message types (Human, AI, System)
  • Full-text search capabilities across message content
  • Chronological message retrieval
  • Session-based message organization
  • Customizable key prefixing
  • Thread-safe operations
  • Efficient RedisVL-based indexing and querying

Advanced Configuration

The RedisConfig class allows for detailed configuration of the Redis integration:

from langchain_redis import RedisConfig

config = RedisConfig(
    index_name="my_index",
    redis_url="redis://localhost:6379",
    distance_metric="COSINE",
    key_prefix="my_prefix",
    vector_datatype="FLOAT32",
    storage_type="hash",
    metadata_schema=[
        {"name": "category", "type": "tag"},
        {"name": "price", "type": "numeric"}
    ]
)

Refer to the inline documentation for detailed information on these configuration options.

Error Handling and Logging

The package uses Python's standard logging module. You can configure logging to get more information about the package's operations:

import logging
logging.basicConfig(level=logging.INFO)

Error handling is done through custom exceptions. Make sure to handle these exceptions in your application code.

Performance Considerations

  • For large datasets, consider using batched operations when adding documents to the vector store.
  • Adjust the k and fetch_k parameters in similarity searches to balance between accuracy and performance.
  • Use appropriate indexing algorithms (FLAT, HNSW) based on your dataset size and query requirements.

Examples

For more detailed examples and use cases, please refer to the docs/ directory in this repository.

Contributing / Development

The library is rooted at libs/redis, for all the commands below, CD to libs/redis:

Unit Tests

To install dependencies for unit tests:

poetry install --with test

To run unit tests:

make test

To run a specific test:

TEST_FILE=tests/unit_tests/test_imports.py make test

Integration Tests

You would need an OpenAI API Key to run the integration tests:

export OPENAI_API_KEY=sk-J3nnYJ3nnYWh0Can1Turnt0Ug1VeMe50mth1n1cAnH0ld0n2

To install dependencies for integration tests:

poetry install --with test,test_integration

To run integration tests:

make integration_tests

Local Development

Install langchain-redis development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):

poetry install --with lint,typing,test,test_integration

Then verify dependency installation:

make lint

License

This project is licensed under the MIT License (LICENSE).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_redis-0.2.4.tar.gz (33.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

langchain_redis-0.2.4-py3-none-any.whl (34.5 kB view details)

Uploaded Python 3

File details

Details for the file langchain_redis-0.2.4.tar.gz.

File metadata

  • Download URL: langchain_redis-0.2.4.tar.gz
  • Upload date:
  • Size: 33.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for langchain_redis-0.2.4.tar.gz
Algorithm Hash digest
SHA256 efa2dc13054eb4136ab90505cb70d41f1e8595c22a5ef22645b5992e9f6ff992
MD5 42dfe83b15e3ecb1fc87a4d144a871e1
BLAKE2b-256 57161047f005d748f58bb7461e351368839850c92293a1f0d56f412c7973c3bb

See more details on using hashes here.

File details

Details for the file langchain_redis-0.2.4-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_redis-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 8c8d90660ded6c94a68ca24079d58c6ec32ff45aa8ffacc9dfdc5584a4a67b3e
MD5 74be760149c43420ddd55433c18a7dec
BLAKE2b-256 4cf6922a7ce355973627e2a511f35840e0c1f195de61ece001c7ef7f9d4911ef

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page