Skip to main content

An implementation of a supervisor multi-agent architecture using LangGraph

Project description

🤖 LangGraph Multi-Agent Supervisor

A Python library for creating hierarchical multi-agent systems using LangGraph. Hierarchical systems are a type of multi-agent architecture where specialized agents are coordinated by a central supervisor agent. The supervisor controls all communication flow and task delegation, making decisions about which agent to invoke based on the current context and task requirements.

Features

  • 🤖 Create a supervisor agent to orchestrate multiple specialized agents
  • 🛠️ Tool-based agent handoff mechanism for communication between agents
  • 📝 Flexible message history management for conversation control

This library is built on top of LangGraph, a powerful framework for building agent applications, and comes with out-of-box support for streaming, short-term and long-term memory and human-in-the-loop

Installation

pip install langgraph-supervisor

Quickstart

Here's a simple example of a supervisor managing two specialized agents:

Supervisor Architecture

pip install langgraph-supervisor langchain-openai

export OPENAI_API_KEY=<your_api_key>
from langchain_openai import ChatOpenAI

from langgraph_supervisor import create_supervisor
from langgraph.prebuilt import create_react_agent

model = ChatOpenAI(model="gpt-4o")

# Create specialized agents

def add(a: float, b: float) -> float:
    """Add two numbers."""
    return a + b

def multiply(a: float, b: float) -> float:
    """Multiply two numbers."""
    return a * b

def web_search(query: str) -> str:
    """Search the web for information."""
    return (
        "Here are the headcounts for each of the FAANG companies in 2024:\n"
        "1. **Facebook (Meta)**: 67,317 employees.\n"
        "2. **Apple**: 164,000 employees.\n"
        "3. **Amazon**: 1,551,000 employees.\n"
        "4. **Netflix**: 14,000 employees.\n"
        "5. **Google (Alphabet)**: 181,269 employees."
    )

math_agent = create_react_agent(
    model=model,
    tools=[add, multiply],
    name="math_expert",
    prompt="You are a math expert. Always use one tool at a time."
)

research_agent = create_react_agent(
    model=model,
    tools=[web_search],
    name="research_expert",
    prompt="You are a world class researcher with access to web search. Do not do any math."
)

# Create supervisor workflow
workflow = create_supervisor(
    [research_agent, math_agent],
    model=model,
    prompt=(
        "You are a team supervisor managing a research expert and a math expert. "
        "For current events, use research_agent. "
        "For math problems, use math_agent."
    )
)

# Compile and run
app = workflow.compile()
result = app.invoke({
    "messages": [
        {
            "role": "user",
            "content": "what's the combined headcount of the FAANG companies in 2024?"
        }
    ]
})

Message History Management

You can control how agent messages are added to the overall conversation history of the multi-agent system:

Include full message history from an agent:

Full History

workflow = create_supervisor(
    agents=[agent1, agent2],
    output_mode="full_history"
)

Include only the final agent response:

Last Message

workflow = create_supervisor(
    agents=[agent1, agent2],
    output_mode="last_message"
)

Multi-level Hierarchies

You can create multi-level hierarchical systems by creating a supervisor that manages multiple supervisors.

research_team = create_supervisor(
    [research_agent, math_agent],
    model=model,
    supervisor_name="research_supervisor"
).compile(name="research_team")

writing_team = create_supervisor(
    [writing_agent, publishing_agent],
    model=model,
    supervisor_name="writing_supervisor"
).compile(name="writing_team")

top_level_supervisor = create_supervisor(
    [research_team, writing_team],
    model=model,
    supervisor_name="top_level_supervisor"
).compile(name="top_level_supervisor")

Adding Memory

You can add short-term and long-term memory to your supervisor multi-agent system. Since create_supervisor() returns an instance of StateGraph that needs to be compiled before use, you can directly pass a checkpointer or a store instance to the .compile() method:

from langgraph.checkpoint.memory import InMemorySaver
from langgraph.store.memory import InMemoryStore

checkpointer = InMemorySaver()
store = InMemoryStore()

model = ...
research_agent = ...
math_agent = ...

workflow = create_supervisor(
    [research_agent, math_agent],
    model=model,
    prompt="You are a team supervisor managing a research expert and a math expert.",
)

# Compile with checkpointer/store
app = workflow.compile(
    checkpointer=checkpointer,
    store=store
)

Using Functional API

Here's a simple example of a supervisor managing two specialized agentic workflows created using Functional API:

pip install langgraph-supervisor langchain-openai

export OPENAI_API_KEY=<your_api_key>
from langgraph.prebuilt import create_react_agent
from langgraph_supervisor import create_supervisor

from langchain_openai import ChatOpenAI

from langgraph.func import entrypoint, task
from langgraph.graph import add_messages

model = ChatOpenAI(model="gpt-4o")

# Create specialized agents

# Functional API - Agent 1 (Joke Generator)
@task
def generate_joke(messages):
    """First LLM call to generate initial joke"""
    system_message = {
        "role": "system", 
        "content": "Write a short joke"
    }
    msg = model.invoke(
        [system_message] + messages
    )
    return msg

@entrypoint()
def joke_agent(state):
    joke = generate_joke(state['messages']).result()
    messages = add_messages(state["messages"], [joke])
    return {"messages": messages}

joke_agent.name = "joke_agent"

# Graph API - Agent 2 (Research Expert)
def web_search(query: str) -> str:
    """Search the web for information."""
    return (
        "Here are the headcounts for each of the FAANG companies in 2024:\n"
        "1. **Facebook (Meta)**: 67,317 employees.\n"
        "2. **Apple**: 164,000 employees.\n"
        "3. **Amazon**: 1,551,000 employees.\n"
        "4. **Netflix**: 14,000 employees.\n"
        "5. **Google (Alphabet)**: 181,269 employees."
    )

research_agent = create_react_agent(
    model=model,
    tools=[web_search],
    name="research_expert",
    prompt="You are a world class researcher with access to web search. Do not do any math."
)

# Create supervisor workflow
workflow = create_supervisor(
    [research_agent, joke_agent],
    model=model,
    prompt=(
        "You are a team supervisor managing a research expert and a joke expert. "
        "For current events, use research_agent. "
        "For any jokes, use joke_agent."
    )
)

# Compile and run
app = workflow.compile()
result = app.invoke({
    "messages": [
        {
            "role": "user",
            "content": "Share a joke to relax and start vibe coding for my next project idea."
        }
    ]
})

for m in result["messages"]:
    m.pretty_print()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langgraph_supervisor-0.0.10.tar.gz (12.9 kB view details)

Uploaded Source

Built Distribution

langgraph_supervisor-0.0.10-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file langgraph_supervisor-0.0.10.tar.gz.

File metadata

  • Download URL: langgraph_supervisor-0.0.10.tar.gz
  • Upload date:
  • Size: 12.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for langgraph_supervisor-0.0.10.tar.gz
Algorithm Hash digest
SHA256 55f65e824a132f2e3e7819772e525b1055a4070a9e62e6012391c1f27af3024c
MD5 afa1462f04533bd2f1e6025de088a582
BLAKE2b-256 8d7d10aa925ffa86448a148f501120f0b3d71fe32e7679a364329d6513ca32cd

See more details on using hashes here.

File details

Details for the file langgraph_supervisor-0.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for langgraph_supervisor-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 69cb375c128741eb1e6150b72172b03be9e525c63ca402d7be9c0fdf7ebaf482
MD5 307245093a5d0a003a9dab9f4f646bdb
BLAKE2b-256 b8e2513601bb3f7ad7f6134b5effd5ce5f1db29c0169880bbb8aa1a406b34d35

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page