Skip to main content

Harness LLMs with Multi-Agent Programming

Project description

Logo

Langroid: Harness LLMs with Multi-Agent Programming

Pytest Lint Docs

Langroid is an intuitive, lightweight, transparent, flexible, extensible and principled Python framework to harness LLMs using Multi-Agent Programming (MAP). We welcome contributions!

Documentation: https://langroid.github.io/langroid/

Usage examples: https://github.com/langroid/langroid-examples

Overview

The LLM Opportunity

Given the remarkable abilities of recent Large Language Models (LLMs), there is an unprecedented opportunity to build intelligent applications powered by this transformative technology. The top question for any enterprise is: how best to harness the power of LLMs for complex applications? For technical and practical reasons, building LLM-powered applications is not as simple as throwing a task at an LLM-system and expecting it to do it.

Langroid's Multi-Agent Programming Framework

Effectively leveraging LLMs at scale requires a principled programming framework. In particular, there is often a need to maintain multiple LLM conversations, each instructed in different ways, and "responsible" for different aspects of a task.

An agent is a convenient abstraction that encapsulates LLM conversation state, along with access to long-term memory (vector-stores) and tools (a.k.a functions or plugins). Thus a Multi-Agent Programming framework is a natural fit for complex LLM-based applications.

Langroid is the first Python LLM-application framework that was explicitly designed with Agents as first-class citizens, and Multi-Agent Programming as the core design principle. The framework is inspired by ideas from the Actor Framework.

Langroid allows an intuitive definition of agents, tasks and task-delegation among agents. There is a principled mechanism to orchestrate multi-agent collaboration. Agents act as message-transformers, and take turns responding to (and transforming) the current message. The architecture is lightweight, transparent, flexible, and allows other types of orchestration to be implemented. Besides Agents, Langroid also provides simple ways to directly interact with
LLMs and vector-stores.

Highlights

Highlights of Langroid's features as of July 2023:

  • Agents as first-class citizens: The Agent class encapsulates LLM conversation state, and optionally a vector-store and tools. Agents are a core abstraction in Langroid; Agents act as message transformers, and by default provide 3 responder methods,
    one corresponding to each entity: LLM, Agent, User.
  • Tasks: A Task class wraps an Agent, and gives the agent instructions (or roles, or goals), manages iteration over an Agent's responder methods, and orchestrates multi-agent interactions via hierarchical, recursive task-delegation. The Task.run() method has the same type-signature as an Agent's responder's methods, and this is key to how a task of an agent can delegate to other sub-tasks: from the point of view of a Task, sub-tasks are simply additional responders, to be used in a round-robin fashion after the agent's own responders.
  • Modularity, Reusabilily, Loose coupling: The Agent and Task abstractions allow users to design Agents with specific skills, wrap them in Tasks, and combine tasks in a flexible way.
  • LLM Support: Langroid supports OpenAI LLMs including GPT-3.5-Turbo, GPT-4-0613
  • Caching of LLM prompts, responses: Langroid uses Redis for caching.
  • Vector-stores: Qdrant and Chroma are currently supported. Vector stores allow for Retrieval-Augmented-Generaation (RAG).
  • Grounding and source-citation: Access to external documents via vector-stores allows for grounding and source-citation.
  • Observability, Logging, Lineage: Langroid generates detailed logs of multi-agent interactions and maintains provenance/lineage of messages, so that you can trace back the origin of a message.
  • Tools/Plugins/Function-calling: Langroid supports OpenAI's recently released function calling feature. In addition, Langroid has its own native equivalent, which we call tools (also known as "plugins" in other contexts). Function calling and tools have the same developer-facing interface, implemented using Pydantic, which makes it very easy to define tools/functions and enable agents to use them. Benefits of using Pydantic are that you never have to write complex JSON specs for function calling, and when the LLM hallucinates malformed JSON, the Pydantic error message is sent back to the LLM so it can fix it!

Usage/quick-start

These are quick teasers to give a glimpse of what you can do with Langroid and how your code would look. See the Getting Started Guide for a detailed tutorial.

Install langroid

Use pip to install langroid (from PyPi) to your virtual environment:

pip install langroid

The core Langroid package lets you use OpenAI Embeddings models via their API. If you instead want to use the all-MiniLM-L6-v2 embeddings model from from HuggingFace, install Langroid like this:

pip install langroid[hf-embeddings]

Note that this will install torch and sentence-transfoemers libraries.

Set up environment variables (API keys, etc)

Copy the .env-template file to a new file .env and insert these secrets:

  • OpenAI API key (required): If you don't have one, see this OpenAI Page.
  • Qdrant Vector Store API Key (required for apps that need retrieval from documents): Sign up for a free 1GB account at Qdrant cloud Alternatively Chroma is also currently supported. We use the local-storage version of Chroma, so there is no need for an API key.
  • GitHub Personal Access Token (required for apps that need to analyze git repos; token-based API calls are less rate-limited). See this GitHub page.
  • Redis Password (optional, only needed to cache LLM API responses): Redis offers a free 30MB Redis account which is more than sufficient to try out Langroid and even beyond.
cp .env-template .env
# now edit the .env file, insert your secrets as above

Your .env file should look like this:

OPENAI_API_KEY=<your key>
GITHUB_ACCESS_TOKEN=<your token>
REDIS_PASSWORD=<your password>
QDRANT_API_KEY=<your key>

Currently only OpenAI models are supported. Others will be added later (Pull Requests welcome!).

Direct interaction with OpenAI LLM

from langroid.language_models.openai_gpt import ( 
        OpenAIGPTConfig, OpenAIChatModel, OpenAIGPT,
)
from langroid.language_models.base import LLMMessage, Role

cfg = OpenAIGPTConfig(chat_model=OpenAIChatModel.GPT4)

mdl = OpenAIGPT(cfg)

messages = [
  LLMMessage(content="You are a helpful assistant",  role=Role.SYSTEM), 
  LLMMessage(content="What is the capital of Ontario?",  role=Role.USER),
],
response = mdl.chat(messages, max_tokens=200)

Define an agent, set up a task, and run it

from langroid.agent.chat_agent import ChatAgent, ChatAgentConfig
from langroid.agent.task import Task
from langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig

config = ChatAgentConfig(
    llm = OpenAIGPTConfig(
        chat_model=OpenAIChatModel.GPT4,
    ),
    vecdb=None, # no vector store
)
agent = ChatAgent(config)
# get response from agent's LLM, and put this in an interactive loop...
answer = agent.llm_response("What is the capital of Ontario?")
# ... or set up a task (which has a built-in loop) and run it
task = Task(agent, name="Bot") 
task.run() # ... a loop seeking response from Agent, LLM or User at each turn

Three communicating agents

A toy numbers game, where when given a number n:

  • repeater_agent's LLM simply returns n,
  • even_agent's LLM returns n/2 if n is even, else says "DO-NOT-KNOW"
  • odd_agent's LLM returns 3*n+1 if n is odd, else says "DO-NOT-KNOW"

First define the 3 agents, and set up their tasks with instructions:

    config = ChatAgentConfig(
        llm = OpenAIGPTConfig(
            chat_model=OpenAIChatModel.GPT4,
        ),
        vecdb = None,
    )
    repeater_agent = ChatAgent(config)
    repeater_task = Task(
        repeater_agent,
        name = "Repeater",
        system_message="""
        Your job is to repeat whatever number you receive.
        """,
        llm_delegate=True, # LLM takes charge of task
        single_round=False, 
    )
    even_agent = ChatAgent(config)
    even_task = Task(
        even_agent,
        name = "EvenHandler",
        system_message=f"""
        You will be given a number. 
        If it is even, divide by 2 and say the result, nothing else.
        If it is odd, say {NO_ANSWER}
        """,
        single_round=True,  # task done after 1 step() with valid response
    )

    odd_agent = ChatAgent(config)
    odd_task = Task(
        odd_agent,
        name = "OddHandler",
        system_message=f"""
        You will be given a number n. 
        If it is odd, return (n*3+1), say nothing else. 
        If it is even, say {NO_ANSWER}
        """,
        single_round=True,  # task done after 1 step() with valid response
    )

Then add the even_task and odd_task as sub-tasks of repeater_task, and run the repeater_task, kicking it off with a number as input:

    repeater_task.add_sub_task([even_task, odd_task])
    repeater_task.run("3")

Simple Tool/Function-calling example

Langroid leverages Pydantic to support OpenAI's Function-calling API as well as its own native tools.

Simple example: Say the agent has a secret list of numbers, and we want the LLM to find the smallest number in the list. We want to give the LLM a probe tool/function which takes a single number n as argument. The tool handler method in the agent returns how many numbers in its list are at most n.

First define the tool using Langroid's ToolMessage class:

from langroid.agent.tool_message import ToolMessage
class ProbeTool(ToolMessage):
  request: str = "probe" # specifies which agent method handles this tool
  purpose: str = """
        To find how many numbers in my list are less than or equal to  
        the <number> you specify.
        """ # description used to instruct the LLM on when/how to use the tool
  number: int  # required argument to the tool

Then define a SpyGameAgent as a subclass of ChatAgent, with a method probe that handles this tool:

from langroid.agent.chat_agent import ChatAgent, ChatAgentConfig
class SpyGameAgent(ChatAgent):
  def __init__(self, config: ChatAgentConfig):
    super().__init__(config)
    self.numbers = [3, 4, 8, 11, 15, 25, 40, 80, 90]

  def probe(self, msg: ProbeTool) -> str:
    # return how many numbers in self.numbers are less or equal to msg.number
    return str(len([n for n in self.numbers if n <= msg.number]))

We then instantiate the agent and enable it to use and respond to the tool:

from langroid.language_models.openai_gpt import OpenAIChatModel, OpenAIGPTConfig
spy_game_agent = SpyGameAgent(
    ChatAgentConfig(
        name="Spy",
        llm = OpenAIGPTConfig(
            chat_model=OpenAIChatModel.GPT4,
        ),
        vecdb=None,
        use_tools=False, #  don't use Langroid native tool
        use_functions_api=True, # use OpenAI function-call API
    )
)
spy_game_agent.enable_message(ProbeTool)

For a full working example see the chat-agent-tool.py script in the langroid-examples repo.

Tool/Function-calling to extract structured information from text

Suppose you want an agent to extract the key terms of a lease, from a lease document, as a nested JSON structure. First define the desired structure via Pydantic models:

from pydantic import BaseModel
class LeasePeriod(BaseModel):
    start_date: str
    end_date: str


class LeaseFinancials(BaseModel):
    monthly_rent: str
    deposit: str

class Lease(BaseModel):
    period: LeasePeriod
    financials: LeaseFinancials
    address: str

Then define the LeaseMessage tool as a subclass of Langroid's ToolMessage. Note the tool as a required argument terms of type Lease:

class LeaseMessage(ToolMessage):
    request: str = "lease_info"
    purpose: str = """
        Collect information about a Commercial Lease.
        """
    terms: Lease

Then define a LeaseExtractorAgent with a method lease_info that handles this tool, instantiate the agent, and enable it to use and respond to this tool:

class LeaseExtractorAgent(ChatAgent):
    def lease_info(self, message: LeaseMessage) -> str:
        print(
            f"""
        DONE! Successfully extracted Lease Info:
        {message.terms}
        """
        )
        return json.dumps(message.terms.dict())
    
lease_extractor_agent = LeaseExtractorAgent(
  ChatAgentConfig(
    llm=OpenAIGPTConfig(),
    use_functions_api=False,
    use_tools=True,
  )
)
lease_extractor_agent.enable_message(LeaseMessage)

See the chat_multi_extract.py script in the langroid-examples repo for a full working example.

Chat with documents (file paths, URLs, etc)

Langroid provides a specialized agent class DocChatAgent for this purpose. It incorporates document sharding, embedding, storage in a vector-DB, and retrieval-augmented query-answer generation. Using this class to chat with a collection of documents is easy. First create a DocChatAgentConfig instance, with a doc_paths field that specifies the documents to chat with.

from langroid.agent.doc_chat_agent import DocChatAgentConfig
config = DocChatAgentConfig(
  doc_paths = [
    "https://en.wikipedia.org/wiki/Language_model",
    "https://en.wikipedia.org/wiki/N-gram_language_model",
    "/path/to/my/notes-on-language-models.txt",
  ]
  llm = OpenAIGPTConfig(
    chat_model=OpenAIChatModel.GPT4,
  ),
  vecdb=VectorStoreConfig(
    type="qdrant",
  ),
)

Then instantiate the DocChatAgent, ingest the docs into the vector-store:

agent = DocChatAgent(config)
agent.ingest()

Then we can either ask the agent one-off questions,

agent.chat("What is a language model?")

or wrap it in a Task and run an interactive loop with the user:

from langroid.task import Task
task = Task(agent)
task.run()

See full working scripts in the docqa folder of the langroid-examples repo.

Contributors

  • Prasad Chalasani (IIT BTech/CS, CMU PhD/ML; Independent ML Consultant)
  • Somesh Jha (IIT BTech/CS, CMU PhD/CS; Professor of CS, U Wisc at Madison)
  • Mohannad Alhanahnah (Research Associate, U Wisc at Madison)
  • Ashish Hooda (IIT BTech/CS; PhD Candidate, U Wisc at Madison)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langroid-0.1.22.tar.gz (82.0 kB view hashes)

Uploaded Source

Built Distribution

langroid-0.1.22-py3-none-any.whl (94.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page