scorecard,model
Project description
LAPRAS
Lapras is designed to make the model developing work easily and conveniently. It contains these functions below in one key operation: data exploratory analysis, feature selection, feature binning, data visualization, scorecard modeling(a logistic regression model with excellent interpretability), performance measure.
Let's get started.
Usage
1.Exploratory Data Analysis lapras.detect() lapras.quality() lapras.IV() lapras.VIF() lapras.PSI()
2.Feature Selection lapras.select() lapras.stepwise()
3.Binning lapras.Combiner() lapras.WOETransformer() lapras.bin_stats() lapras.bin_plot()
4.Modeling lapras.ScoreCard()
5.Performance Measure lapras.perform() lapras.LIFT() lapras.score_plot() lapras.KS_bucket() lapras.PPSI() lapras.KS() lapras.AUC()
6.One Key Auto Modeling Lapras also provides a function which runs all the steps above automatically: lapras.auto_model()
For more details, please refer to the wiki page. Enjoy.
Install
via pip
pip install lapras --upgrade -i https://pypi.org/simple
via source code
python setup.py install
install_requires = [ 'numpy >= 1.18.4', 'pandas >= 0.25.1, <=0.25.3', 'scipy >= 1.3.2', 'scikit-learn =0.22.2', 'seaborn >= 0.10.1', 'statsmodels >= 0.13.1', 'tensorflow >= 2.2.0, <=2.5.0', 'hyperopt >= 0.2.7', 'pickle >= 4.0', ]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for lapras-0.0.20-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8402e5fd391d83c8c4005496e4f1edb368d723ddafadae2d8ca456d5d413ebdb |
|
MD5 | 690012b3fcaf16d70f3f9647df5d3214 |
|
BLAKE2b-256 | 42dea4503c7f60db1f661cbe4b1c4498184977630f91acdb1c7e664941bef8d3 |