Skip to main content

TensorFlow implementation of the Lorentz Boost Network (LBN).

Project description

For more information, see https://arxiv.org/abs/1812.09722.
Home-page: https://git.rwth-aachen.de/3pia/lbn
Author: Marcel Rieger
Author-email: marcel.rieger@cern.ch
License: BSD
Description: # Lorentz Boost Network (LBN) [![pipeline status](https://git.rwth-aachen.de/3pia/lbn/badges/master/pipeline.svg)](https://git.rwth-aachen.de/3pia/lbn/pipelines)

TensorFlow implementation of the Lorentz Boost Network from [arXiv:1812.09722 [hep-ex]](https://arxiv.org/abs/1812.09722).

Original repository: [git.rwth-aachen.de/3pia/lbn](https://git.rwth-aachen.de/3pia/lbn)


### Usage example

```python
from lbn import LBN

# initialize the LBN, set 10 combinations and pairwise boosting
lbn = LBN(10, boost_mode=LBN.PAIRS)

# create a feature tensor based on input four-vectors
features = lbn(four_vectors)

# use the features as input for a subsequent, application-specific network
...
```


### Installation and dependencies

Via [pip](https://pypi.python.org/pypi/lbn):

```bash
pip install lbn
```

NumPy and TensorFlow are the only dependencies.


### Testing

Tests should be run for Python 2 and 3. The following commands assume you are root directory of the LBN respository:

```bash
python -m unittest test

# or via docker, python 2
docker run --rm -v `pwd`:/root/lbn -w /root/lbn tensorflow/tensorflow:latest python -m unittest test

# or via docker, python 3
docker run --rm -v `pwd`:/root/lbn -w /root/lbn tensorflow/tensorflow:latest-py3 python -m unittest test
```


### Contributing

If you like to contribute, we are happy to receive pull requests. Just make sure to add new test cases and run the tests. Also, please use a coding style that is compatible with our `.flake8` config.


### Development

- Original source hosted at [RWTH GitLab](https://git.rwth-aachen.de/3pia/lbn)
- Report issues, questions, feature requests on [RWTH GitLab Issues](https://git.rwth-aachen.de/3pia/lbn/issues)

Keywords: neural network,lorentz,lorentz transformation,lorentz boost,autonomous,feature,feature engineering,autonomous engineering,hep,four momenta,four vectors
Platform: UNKNOWN
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 3
Classifier: Development Status :: 4 - Beta
Classifier: Operating System :: OS Independent
Classifier: License :: OSI Approved :: BSD License
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Information Technology
Requires-Python: >=2.7
Description-Content-Type: text/markdown

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lbn-1.0.0.tar.gz (12.0 kB view details)

Uploaded Source

File details

Details for the file lbn-1.0.0.tar.gz.

File metadata

  • Download URL: lbn-1.0.0.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.14

File hashes

Hashes for lbn-1.0.0.tar.gz
Algorithm Hash digest
SHA256 a701bb7e19a38ff446822ffa3bccf7205fa3badc8fef88e3b2dd04fc2bfc9c24
MD5 092625b003f5532e21cf450aa219cbe9
BLAKE2b-256 153c4911213a1dba76932f11f38d825c9e14e03347064f9595608b4188cc2f4e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page