TensorFlow implementation of the Lorentz Boost Network (LBN).
Project description
For more information, see https://arxiv.org/abs/1812.09722.
Home-page: https://git.rwth-aachen.de/3pia/lbn
Author: Marcel Rieger
Author-email: marcel.rieger@cern.ch
License: BSD
Description: # Lorentz Boost Network (LBN) [](https://git.rwth-aachen.de/3pia/lbn/pipelines)
TensorFlow implementation of the Lorentz Boost Network from [arXiv:1812.09722 [hep-ex]](https://arxiv.org/abs/1812.09722).
Original repository: [git.rwth-aachen.de/3pia/lbn](https://git.rwth-aachen.de/3pia/lbn)
### Usage example
```python
from lbn import LBN
# initialize the LBN, set 10 combinations and pairwise boosting
lbn = LBN(10, boost_mode=LBN.PAIRS)
# create a feature tensor based on input four-vectors
features = lbn(four_vectors)
# use the features as input for a subsequent, application-specific network
...
```
### Installation and dependencies
Via [pip](https://pypi.python.org/pypi/lbn):
```bash
pip install lbn
```
NumPy and TensorFlow are the only dependencies.
### Testing
Tests should be run for Python 2 and 3. The following commands assume you are root directory of the LBN respository:
```bash
python -m unittest test
# or via docker, python 2
docker run --rm -v `pwd`:/root/lbn -w /root/lbn tensorflow/tensorflow:latest python -m unittest test
# or via docker, python 3
docker run --rm -v `pwd`:/root/lbn -w /root/lbn tensorflow/tensorflow:latest-py3 python -m unittest test
```
### Contributing
If you like to contribute, we are happy to receive pull requests. Just make sure to add new test cases and run the tests. Also, please use a coding style that is compatible with our `.flake8` config.
### Development
- Original source hosted at [RWTH GitLab](https://git.rwth-aachen.de/3pia/lbn)
- Report issues, questions, feature requests on [RWTH GitLab Issues](https://git.rwth-aachen.de/3pia/lbn/issues)
Keywords: neural network,lorentz,lorentz transformation,lorentz boost,autonomous,feature,feature engineering,autonomous engineering,hep,four momenta,four vectors
Platform: UNKNOWN
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 3
Classifier: Development Status :: 4 - Beta
Classifier: Operating System :: OS Independent
Classifier: License :: OSI Approved :: BSD License
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Information Technology
Requires-Python: >=2.7
Description-Content-Type: text/markdown
Home-page: https://git.rwth-aachen.de/3pia/lbn
Author: Marcel Rieger
Author-email: marcel.rieger@cern.ch
License: BSD
Description: # Lorentz Boost Network (LBN) [](https://git.rwth-aachen.de/3pia/lbn/pipelines)
TensorFlow implementation of the Lorentz Boost Network from [arXiv:1812.09722 [hep-ex]](https://arxiv.org/abs/1812.09722).
Original repository: [git.rwth-aachen.de/3pia/lbn](https://git.rwth-aachen.de/3pia/lbn)
### Usage example
```python
from lbn import LBN
# initialize the LBN, set 10 combinations and pairwise boosting
lbn = LBN(10, boost_mode=LBN.PAIRS)
# create a feature tensor based on input four-vectors
features = lbn(four_vectors)
# use the features as input for a subsequent, application-specific network
...
```
### Installation and dependencies
Via [pip](https://pypi.python.org/pypi/lbn):
```bash
pip install lbn
```
NumPy and TensorFlow are the only dependencies.
### Testing
Tests should be run for Python 2 and 3. The following commands assume you are root directory of the LBN respository:
```bash
python -m unittest test
# or via docker, python 2
docker run --rm -v `pwd`:/root/lbn -w /root/lbn tensorflow/tensorflow:latest python -m unittest test
# or via docker, python 3
docker run --rm -v `pwd`:/root/lbn -w /root/lbn tensorflow/tensorflow:latest-py3 python -m unittest test
```
### Contributing
If you like to contribute, we are happy to receive pull requests. Just make sure to add new test cases and run the tests. Also, please use a coding style that is compatible with our `.flake8` config.
### Development
- Original source hosted at [RWTH GitLab](https://git.rwth-aachen.de/3pia/lbn)
- Report issues, questions, feature requests on [RWTH GitLab Issues](https://git.rwth-aachen.de/3pia/lbn/issues)
Keywords: neural network,lorentz,lorentz transformation,lorentz boost,autonomous,feature,feature engineering,autonomous engineering,hep,four momenta,four vectors
Platform: UNKNOWN
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 3
Classifier: Development Status :: 4 - Beta
Classifier: Operating System :: OS Independent
Classifier: License :: OSI Approved :: BSD License
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Information Technology
Requires-Python: >=2.7
Description-Content-Type: text/markdown
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
lbn-1.0.0.tar.gz
(12.0 kB
view details)
File details
Details for the file lbn-1.0.0.tar.gz
.
File metadata
- Download URL: lbn-1.0.0.tar.gz
- Upload date:
- Size: 12.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
a701bb7e19a38ff446822ffa3bccf7205fa3badc8fef88e3b2dd04fc2bfc9c24
|
|
MD5 |
092625b003f5532e21cf450aa219cbe9
|
|
BLAKE2b-256 |
153c4911213a1dba76932f11f38d825c9e14e03347064f9595608b4188cc2f4e
|