This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

lensfunpy is an easy-to-use Python wrapper for the lensfun library.

API Documentation

Sample code

How to find cameras and lenses:

import lensfunpy

cam_maker = 'NIKON CORPORATION'
cam_model = 'NIKON D3S'
lens_maker = 'Nikon'
lens_model = 'Nikkor 28mm f/2.8D AF'

db = lensfunpy.Database()
cam = db.find_cameras(cam_maker, cam_model)[0]
lens = db.find_lenses(cam, lens_maker, lens_model)[0]

print(cam)
# Camera(Maker: NIKON CORPORATION; Model: NIKON D3S; Variant: ;
#        Mount: Nikon F AF; Crop Factor: 1.0; Score: 0)

print(lens)
# Lens(Maker: Nikon; Model: Nikkor 28mm f/2.8D AF; Type: RECTILINEAR;
#      Focal: 28.0-28.0; Aperture: 2.79999995232-2.79999995232;
#      Crop factor: 1.0; Score: 110)

How to correct lens distortion:

import cv2 # OpenCV library

focal_length = 28.0
aperture = 1.4
distance = 10
image_path = '/path/to/image.tiff'
undistorted_image_path = '/path/to/image_undist.tiff'

im = cv2.imread(image_path)
height, width = im.shape[0], im.shape[1]

mod = lensfunpy.Modifier(lens, cam.crop_factor, width, height)
mod.initialize(focal_length, aperture, distance)

undist_coords = mod.apply_geometry_distortion()
im_undistorted = cv2.remap(im, undist_coords, None, cv2.INTER_LANCZOS4)
cv2.imwrite(undistorted_image_path, im_undistorted)

It is also possible to apply the correction via SciPy instead of OpenCV. The lensfunpy.util module contains convenience functions for RGB images which handle both OpenCV and SciPy.

NumPy Dependency

Before installing lensfunpy, you need to have numpy installed. You can check your numpy version with pip freeze.

The minimum supported numpy version depends on your Python version:

Python numpy
2.7 - 3.3 >= 1.7.1
3.4 >= 1.8.1
3.5 >= 1.9.3

You can install numpy with pip install numpy.

Installation on Windows and Mac OS X

Binaries are provided for Python 2.7, 3.3, 3.4, and 3.5 for both 32 and 64 bit. These can be installed with a simple pip install --use-wheel lensfunpy (or just pip install lensfunpy if using pip >= 1.5).

Installation on Linux

You need to have the lensfun library installed to use this wrapper.

On Ubuntu, you can get (an outdated) version with:

sudo apt-get install liblensfun0 liblensfun-dev

Or install the latest developer version from the GIT repository:

git clone git://git.code.sf.net/p/lensfun/code lensfun
cd lensfun
cmake .
sudo make install

After that, it’s the usual pip install lensfunpy.

If you get the error “ImportError: liblensfun.so.0: cannot open shared object file: No such file or directory” when trying to use lensfunpy, then do the following:

echo "/usr/local/lib" | sudo tee /etc/ld.so.conf.d/99local.conf
sudo ldconfig

The lensfun library is installed in /usr/local/lib and apparently this folder is not searched for libraries by default in some Linux distributions.

Release History

Release History

1.4.0

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.3.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.2.4

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.2.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.2.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.2.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.12.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.11.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.10.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.9.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.9.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
lensfunpy-1.4.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.5 MB) Copy SHA256 Checksum SHA256 cp27 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp27-none-win32.whl (1.6 MB) Copy SHA256 Checksum SHA256 2.7 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp27-none-win_amd64.whl (1.6 MB) Copy SHA256 Checksum SHA256 2.7 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.5 MB) Copy SHA256 Checksum SHA256 cp33 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp33-none-win32.whl (1.6 MB) Copy SHA256 Checksum SHA256 3.3 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp33-none-win_amd64.whl (1.6 MB) Copy SHA256 Checksum SHA256 3.3 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.5 MB) Copy SHA256 Checksum SHA256 cp34 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp34-none-win32.whl (1.6 MB) Copy SHA256 Checksum SHA256 3.4 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp34-none-win_amd64.whl (1.6 MB) Copy SHA256 Checksum SHA256 3.4 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.5 MB) Copy SHA256 Checksum SHA256 cp35 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp35-none-win32.whl (1.6 MB) Copy SHA256 Checksum SHA256 3.5 Wheel Dec 30, 2015
lensfunpy-1.4.0-cp35-none-win_amd64.whl (1.6 MB) Copy SHA256 Checksum SHA256 3.5 Wheel Dec 30, 2015
lensfunpy-1.4.0.tar.gz (102.6 kB) Copy SHA256 Checksum SHA256 Source Dec 30, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting