Skip to main content

Lossy-compression utility for sequence data in NumPy

Project description

lilcom

This package lossily compresses floating-point NumPy arrays into byte strings, with an accuracy specified by the user. The main anticipated use is in machine learning applications, for storing things like training data and models.

This package requires Python 3 and is not compatible with Python 2.

Installation with PyPi

From PyPi you can install this with just

pip3 install lilcom

Installation with conda

conda install -c lilcom lilcom

How to use

The most common usage pattern will be as follows (showing Python code):

import numpy as np
import lilcom

a = np.random.randn(300,500)
a_compressed = lilcom.compress(a)
# a_compressed is of type `bytes`, a byte string.
# In this case it will use about 1.3 bytes per element.

# decompress a
a_decompressed = lilcom.decompress(a_compressed)

The compression is lossy so a_decompressed will not be exactly the same as a. The amount of error (absolute, not relative!) is determined by the optional tick_power argument to lilcom.compress() (default: -8), which is the power of 2 used for the step size between discretized values. The maximum error per element is 2**(tick_power-1), e.g. for tick_power=-8, it is 1/512.

Installation from Github

To install lilcom from github, first clone the repository;

git clone https://github.com/danpovey/lilcom.git

then run setup with install argument.

python3 setup.py install

(you may need to add the --user flag if you don't have system privileges). You need to make sure a C++ compiler is installed, e.g. g++ or clang. To test it, you can then cd to test and run:

python3 test_lilcom.py

Technical details

The algorithm regresses each element on the previous element (for a 1-d array) or, for general n-d arrays, it regresses on the previous elements along each of the axes, i.e. we regress element a[i,j] on a[i-1,j] and a[i,j-1]. The regression coefficients are global and written as part of the header in the string.

The elements are then integerized and the integers are compressed using an algorithm that gives good compression when successive elements tend to have about the same magnitude (the number of bits we're transmitting varies dynamically acccording to the magnitudes of the elements).

The core parts of the code are implemented in C++.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lilcom-1.8.2.tar.gz (46.7 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

lilcom-1.8.2-cp314-cp314-win_amd64.whl (71.6 kB view details)

Uploaded CPython 3.14Windows x86-64

lilcom-1.8.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (93.5 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

lilcom-1.8.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (87.1 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

lilcom-1.8.2-cp314-cp314-macosx_10_15_universal2.whl (118.9 kB view details)

Uploaded CPython 3.14macOS 10.15+ universal2 (ARM64, x86-64)

lilcom-1.8.2-cp313-cp313-win_amd64.whl (69.7 kB view details)

Uploaded CPython 3.13Windows x86-64

lilcom-1.8.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (93.5 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

lilcom-1.8.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (86.8 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

lilcom-1.8.2-cp313-cp313-macosx_10_13_universal2.whl (118.5 kB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

lilcom-1.8.2-cp312-cp312-win_amd64.whl (69.7 kB view details)

Uploaded CPython 3.12Windows x86-64

lilcom-1.8.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (93.0 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

lilcom-1.8.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (86.8 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

lilcom-1.8.2-cp312-cp312-macosx_10_13_universal2.whl (118.5 kB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

lilcom-1.8.2-cp311-cp311-win_amd64.whl (69.2 kB view details)

Uploaded CPython 3.11Windows x86-64

lilcom-1.8.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (94.3 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

lilcom-1.8.2-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (88.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

lilcom-1.8.2-cp311-cp311-macosx_10_9_universal2.whl (120.0 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

lilcom-1.8.2-cp310-cp310-win_amd64.whl (68.5 kB view details)

Uploaded CPython 3.10Windows x86-64

lilcom-1.8.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (92.3 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lilcom-1.8.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (86.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

lilcom-1.8.2-cp310-cp310-macosx_10_9_universal2.whl (117.5 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

lilcom-1.8.2-cp39-cp39-win_amd64.whl (68.2 kB view details)

Uploaded CPython 3.9Windows x86-64

lilcom-1.8.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (92.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lilcom-1.8.2-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (86.8 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

lilcom-1.8.2-cp39-cp39-macosx_10_9_universal2.whl (117.7 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

lilcom-1.8.2-cp38-cp38-win_amd64.whl (68.5 kB view details)

Uploaded CPython 3.8Windows x86-64

lilcom-1.8.2-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (92.3 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

lilcom-1.8.2-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (86.3 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

lilcom-1.8.2-cp38-cp38-macosx_10_9_universal2.whl (117.0 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

lilcom-1.8.2-cp37-cp37m-win_amd64.whl (68.9 kB view details)

Uploaded CPython 3.7mWindows x86-64

File details

Details for the file lilcom-1.8.2.tar.gz.

File metadata

  • Download URL: lilcom-1.8.2.tar.gz
  • Upload date:
  • Size: 46.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for lilcom-1.8.2.tar.gz
Algorithm Hash digest
SHA256 674dc1bef8c7d403d2e8f274705a4e3e1c1f1e430d4e94e209356b57c1619aca
MD5 462d92fb20eee27f1a06a37fb2e2dff4
BLAKE2b-256 2918dad9eb84512a517f3c810f5fa47959303b3b33b100fca93d6f5796a7251f

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.2-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 71.6 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.14.2

File hashes

Hashes for lilcom-1.8.2-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 174a284e973b6b57b9432c55978413c9b8a3112833e7cc890f5f5209a8a665c9
MD5 86fd2aeecad9d0329376479aceb7f22b
BLAKE2b-256 09cc14073ccde224da3a4f4284f38d0220b47b09a059d1181af576ac7cb69157

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 150ee54632ae366f0c41f8136dede1d3f55286f7b7137b2c4de45d52db16a333
MD5 d383457261c979d62c415b0c54b7b289
BLAKE2b-256 2e2a6705814902bb8c236a7c1d46dcb4331288d39b877c6d819f93495cac8688

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 738e10878b86a59ddb706fd55206dd186c5ff1b1d8640e79ceac2d3e25d65537
MD5 7dd437205186677a2ff20e04f794b281
BLAKE2b-256 2376781fa0a40cc74cf255b2be0be72d7562e3a4a8c9dc6e95b2b428217aa78c

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp314-cp314-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp314-cp314-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 86c68bef3e5ef443eec092384606ece2b94babde83650437079f63afe1aef1c4
MD5 ed6c411b35bf86d64f6f955a7fd9880b
BLAKE2b-256 a1f16f3ff00fd3011276490ca6fbe14713a6062397fb06d397eb23a0f12bfa79

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 69.7 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.13.5

File hashes

Hashes for lilcom-1.8.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 13d387472a9860909dbead72af29ceaa4f92be27d694df388a1b4a299c42d6a0
MD5 4cdefb815c5532c4857f34b51bcb7c08
BLAKE2b-256 a3074febd60c0571f838a33a5342e7235a997369c0cac5ab71ea3fea04b65585

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 988538da5b7e819443f2e10f800d79299fe8055ec3a91db8b1ed661dab3223bc
MD5 2561eb08b92f8b90e107704070f40cd3
BLAKE2b-256 4308ed28f4a048229029a07b6808cdbdc26de0c0be889ca29454e07677cc303b

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 35012978dcd94b27b878ca5566c4c0d713c89544673aa41a971ac0e09fe38245
MD5 d65ed4b110072df7ff887782482b2caa
BLAKE2b-256 b08e66dc6509608f2e23ab6fa0e260eb4c37d840a091ba1502e670208042b4df

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 d80427c0bd2e9d7d3d0cceb45ca3c3e65330274085055efed3079da71029f322
MD5 e3f9c03ea22f6c7705d39f3d18e61911
BLAKE2b-256 5606e7e81d70ff5b2c8434fe2ad870659b5e5c1e6ba948d9bae5eb14459c4c1f

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 69.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.10

File hashes

Hashes for lilcom-1.8.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0bdee08cb1582532b090eb07aeaed116343e861b945a89d068dc8c27c156afb2
MD5 399651db96eebf630aeb4ea0fd84ce94
BLAKE2b-256 fb2b49b0fd9d58afa3dcd128ed892c51ff162a63abdbb8754114c1f0060128b0

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 7a32895134ae754ca889ef456dfb1e8d90355c33367ec1f1943211001df480c1
MD5 d38d211ddb04c8e9708cea701efb9378
BLAKE2b-256 5243f1f585d1a05d7774e2a678c2a73b4f771011a33c7ae04eb42cbc9d68752e

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 f28a68165b7dbf55613fbe463f2e322165de4f54a8744ef653f5b112eca4ca24
MD5 29a8b6673cd2ad6cda573ee6b3caecad
BLAKE2b-256 ce4dde0f5d220bc52f4140f5a09239c795575d1ca0fc84c4ec2ac98015071cfc

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 9c2d0e7522554b6c13f9f7e54db3c2c917a4fd41e1ac29afd9fa7973f935315a
MD5 6637362a749e8f96fabae9a56d715301
BLAKE2b-256 aba5e3d9b6a0177a7c78c2adf30ebdcfe550b2801f10c95efea39de5d4d2e481

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 69.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for lilcom-1.8.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3b33d0171df9f2b26daf5c03dceaffdd708231058a8d73430c5870fe97a4c1b7
MD5 3c629fb030d75bcd01cb8ddab7b3889e
BLAKE2b-256 e5669cf625f791d4707ab264a27142105b13d6141885096e49ee17b0eeb63db2

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 7a4b78053567e0b39f0479b159bf98c45dba8dcc4a7c7fa03b9ae4900d6bf419
MD5 0e3a95196e3c69173a93325aa8be4702
BLAKE2b-256 147ccd8374371c2fe5cfb9364f67601d18ec158e7f0290a57a7e58a5f71c8b93

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 324d9251d2690586868ce88ad557a43e5e408f592260d877f24ac15b0a0b582a
MD5 7e525d5dd94738284ca4b000dfa266e1
BLAKE2b-256 371226f37710806001a933fde08c92337e12fb0f2fb9380650b6a075d0b077be

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 845c1365b6f16377a5846b27e8be56e64740d29913e8534a9206cf73c8d5afd0
MD5 7a830539f204a5cafed05ee8427bb60d
BLAKE2b-256 f72c9b4fd5cf5efeb3a7e76e46d465baf5cf808c18233d9c127cc2dfec050af0

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 68.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.11

File hashes

Hashes for lilcom-1.8.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 63b9dad9873cc03a9a99efd7951079461b94d3f1d510e92378ba89dc1f7a5b1c
MD5 e5f1ec3211153556b8af5c6197203498
BLAKE2b-256 5c7ad80515faf9e45d122bf39395dc028133f6ade04e86d1a6c97716a4a630c6

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 a6b1f8cbb2100a6342749af389f707053a4eb78a778c1159680ddec60d5c7c42
MD5 5b192adbe7298ded61233b71ed20182c
BLAKE2b-256 fe7a447e4b8d98976dbe946cf2c59b09147c0bd70370bba608b786f16c8af054

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 c34a2fc511c2de382c1e414f58388f0bca62e19d689efbc6459fb036ef6e4e6f
MD5 4ee20acb4b73943418b901526fcee405
BLAKE2b-256 8a481a7b1fc2a1abf5b20c2f14fafa54cccccd25027e946be43ec0d2b6ab0577

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3f4a225c645f033c9bec75e3c10d2711613533e2cdecd07fd0ff5171d16de20c
MD5 73480173de71c6093776434a0ef3dcb3
BLAKE2b-256 83a08df96b9c184574bcd4ec8ed2dd95aee123d06ceb60843f51229af72350b9

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 68.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for lilcom-1.8.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ef8466e10c795d4329c59985e20a0ebe1ad1a9224bfeb5be74101818c6cfdc9d
MD5 b06116f3a199a6a5d4807c3122a294ce
BLAKE2b-256 d5b2056dd9dc670ade2603e853734d5e8e93654ad3133a6472ada4ac1982e259

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 64c7f015dd3744217edbf00e94563ba0c94817b4503459d05f11ff1d01f99c7a
MD5 510086174f7e611834120169699abae9
BLAKE2b-256 d8311b7210d1b5a41e0d5f6580bde69c20d61052cc37a17b149e1962428f8ebd

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 d3390f2eab3520bd0a7ce5565053b72a6967d192973d6f319b0fd517e28a9ee0
MD5 eaa1a7ee460ea854db599e326166fe41
BLAKE2b-256 b36ceb88558b5465048adeccabeb0573b38847f184d65118b9f9d81ef1d120ba

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7df109f05283c35276ecade8f2c170394a417a2ccc2525e416cf4522907f8643
MD5 2e77f10ce8ce6a4b100f64aa42f007e8
BLAKE2b-256 71b506e406f00f1c1422de8d6b1c06370e372e5dab23bdda64ee21d224fdb092

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 68.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for lilcom-1.8.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1fb53c8dd14d5e53b91d3fc3d2e1fa13cf9102c01fbd5058fde20eb216e6d051
MD5 35503726ccdc5df47735828efa9ab295
BLAKE2b-256 0fe05ac5509af24afb404237c601b2358cbd45968dfdf9511b4b5aca1bde6feb

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 3808fcb0409ad2812f0e4b937e46499c058e559d2be2842abd700217ea5849da
MD5 e3a98ec8af4b4cb6444202cf9bb18496
BLAKE2b-256 cd01a2c9cc6295a1233f087fb869a746df635429862f89f7d5cbc395a3fd6e81

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 f9efec60b0859746fbc94d4a665162089bae192907d174f239a7ce90317707af
MD5 6f8abc5b440f24c8099cfd07a21f2708
BLAKE2b-256 0702b51baa9dc6b621b445fe2d5148060062c798bfb400fbb3f353ba1d93f46c

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2a0331e8ac9b9e6bb772607e8e056fc6fe49cbcc5abf7823837ecbb96fbf2d04
MD5 a038dccd5d8b885f92b06d29c04cc161
BLAKE2b-256 6d71889adbf83b3ef568b1def54a7ada6da044a006badc6a04c9999ab64d062e

See more details on using hashes here.

File details

Details for the file lilcom-1.8.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 68.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for lilcom-1.8.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2e188ef239866f104166947ed1cd7f4fe1c951aa13e59da5d2b1064565125eb0
MD5 e68cc932d1802cbb7037bb848665e408
BLAKE2b-256 6d6a089865a8b4fb1ea3f3a09f943af737d4439d61e5c791a6a32f1764a56790

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page