Skip to main content

linefit ground segmentation algorithm Python bindings

Project description

linefit

Stable Version Python Versions Download Stats

linefit is a ground segmentation algorithm for 3D point clouds. This repo we setup a python binding for the original C++ code and push to pypi for easy installation through pip install linefit.

Author: C++ code from Lorenz Wellhausen, python package from Qingwen Zhang.

Running on macOS, Windows and Linux, with Python Version >= 3.8.

Available in:

📜 Change Log:

  • 2025-04-18: Add __init__.py to the package with ascontiguousarray to avoid unexpected point error reading, add package to the latest python (3.13) also. Rename the default branch to main.
  • 2024-07-03: Speed up nanobind np.array <-> std::vector<Eigen:: Vector3d> conversion and also NOMINSIZE in make. Speed difference: 0.1s -> 0.01s. Based on discussion here.
  • 2024-02-15: Initial version.

0. Setup

Choose one of the following options to install the package (recommended to use Option A pip install linefit):

Option A: Install from pypi pip install linefit

Option B: Clone this repo and run following to build:

pip install git+https://github.com/Kin-Zhang/linefit
python3 -c 'import linefit; print("linefit ground seg lib import success")'

Dependencies for demo:

# for reading data and visualization
pip install numpy open3d

1. Run the example

Demo usage:

pc_data = np.load("kitti_pc0.npy") # [N, 3]
groundseg = ground_seg("config.toml")
label = np.array(groundseg.run(pc_data[:,:3])) # [N, 1]
# 1: ground, 0: non-ground for this pc_data

You can check the full example script in example.py. If you run the example script, it will directly show a default effect of demo data.

python example.py

A window will pop up and show the ground segmentation result.

Parameter description

Parameters are set in assets/config.toml. I also provided several popular datasets' parameters in assets/config. Note that the origin pose should in sensor link but base link of the robot or vehicle. The process step can be found in DeFlow/SeFlow.

TL;DR: tune the sensor_height to offset the ground point z to 0. Others are optional for better performance. If you are interested in the details, please read the following.

This algorithm works on the assumption that you known the height of the sensor above ground. Therefore, you have to adjust the sensor_height to your robot specifications, otherwise, it will not work.

The default parameters should work on the KITTI dataset.

Ground Condition

  • sensor_height Sensor height above ground.
  • max_dist_to_line maximum vertical distance of point to line to be considered ground.
  • max_slope Maximum slope of a line.
  • min_slope Minimum slope of a line.
  • max_fit_error Maximum error a point is allowed to have in a line fit.
  • max_start_height Maximum height difference between new point and estimated ground height to start a new line.
  • long_threshold Distance after which the max_height condition is applied.
  • max_height Maximum height difference between line points when they are farther apart than long_threshold.
  • line_search_angle How far to search in angular direction to find a line. A higher angle helps fill "holes" in the ground segmentation.

Segmentation

  • r_min Distance at which segmentation starts.
  • r_max Distance at which segmentation ends.
  • n_bins Number of radial bins.
  • n_segments Number of angular segments.

Other

  • n_threads Number of threads to use.

Acknowledgement & Citation

The original C++ code is from the repo we forked: lorenwel/linefit_ground_segmentation.

The original methods are described in the following paper:

@inproceedings{himmelsbach2010fast,
  title={Fast segmentation of 3d point clouds for ground vehicles},
  author={Himmelsbach, Michael and Hundelshausen, Felix V and Wuensche, H-J},
  booktitle={Intelligent Vehicles Symposium (IV), 2010 IEEE},
  pages={560--565},
  year={2010},
  organization={IEEE}
}

This Python package is developed during HiMo project, please consider to cite our paper if this python package is helpful for your research:

@article{zhang2025himo,
    title={HiMo: High-Speed Objects Motion Compensation in Point Cloud},
    author={Zhang, Qingwen and Khoche, Ajinkya and Yang, Yi and Ling, Li and Sina, Sharif Mansouri and Andersson, Olov and Jensfelt, Patric},
    year={2025},
    journal={arXiv preprint arXiv:2503.00803},
}

More python binding examples can be found in our other project:

  • dufomap: a dynamic awareness mapping framework. Remove dynamic points in a raw map.
  • dztimer: a breakout timer for python code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

linefit-1.1.0-pp310-pypy310_pp73-win_amd64.whl (129.5 kB view details)

Uploaded PyPyWindows x86-64

linefit-1.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (163.0 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

linefit-1.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (110.5 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

linefit-1.1.0-pp310-pypy310_pp73-macosx_10_14_x86_64.whl (120.9 kB view details)

Uploaded PyPymacOS 10.14+ x86-64

linefit-1.1.0-pp39-pypy39_pp73-win_amd64.whl (129.6 kB view details)

Uploaded PyPyWindows x86-64

linefit-1.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (163.0 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

linefit-1.1.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (110.5 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

linefit-1.1.0-pp39-pypy39_pp73-macosx_10_14_x86_64.whl (120.9 kB view details)

Uploaded PyPymacOS 10.14+ x86-64

linefit-1.1.0-pp38-pypy38_pp73-win_amd64.whl (129.1 kB view details)

Uploaded PyPyWindows x86-64

linefit-1.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162.6 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

linefit-1.1.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl (110.1 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

linefit-1.1.0-pp38-pypy38_pp73-macosx_10_14_x86_64.whl (120.4 kB view details)

Uploaded PyPymacOS 10.14+ x86-64

linefit-1.1.0-cp312-cp312-win_amd64.whl (131.1 kB view details)

Uploaded CPython 3.12Windows x86-64

linefit-1.1.0-cp312-cp312-musllinux_1_1_x86_64.whl (493.0 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

linefit-1.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (165.2 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

linefit-1.1.0-cp312-cp312-macosx_11_0_arm64.whl (112.7 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

linefit-1.1.0-cp312-cp312-macosx_10_14_x86_64.whl (124.1 kB view details)

Uploaded CPython 3.12macOS 10.14+ x86-64

linefit-1.1.0-cp311-cp311-win_amd64.whl (131.6 kB view details)

Uploaded CPython 3.11Windows x86-64

linefit-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl (494.0 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

linefit-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

linefit-1.1.0-cp311-cp311-macosx_11_0_arm64.whl (113.7 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

linefit-1.1.0-cp311-cp311-macosx_10_14_x86_64.whl (124.8 kB view details)

Uploaded CPython 3.11macOS 10.14+ x86-64

linefit-1.1.0-cp310-cp310-win_amd64.whl (131.8 kB view details)

Uploaded CPython 3.10Windows x86-64

linefit-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (494.1 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

linefit-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

linefit-1.1.0-cp310-cp310-macosx_11_0_arm64.whl (113.9 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

linefit-1.1.0-cp310-cp310-macosx_10_14_x86_64.whl (125.0 kB view details)

Uploaded CPython 3.10macOS 10.14+ x86-64

linefit-1.1.0-cp39-cp39-win_amd64.whl (132.2 kB view details)

Uploaded CPython 3.9Windows x86-64

linefit-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl (494.2 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

linefit-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.8 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

linefit-1.1.0-cp39-cp39-macosx_11_0_arm64.whl (114.1 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

linefit-1.1.0-cp39-cp39-macosx_10_14_x86_64.whl (125.2 kB view details)

Uploaded CPython 3.9macOS 10.14+ x86-64

linefit-1.1.0-cp38-cp38-win_amd64.whl (131.6 kB view details)

Uploaded CPython 3.8Windows x86-64

linefit-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl (493.7 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

linefit-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (165.9 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

linefit-1.1.0-cp38-cp38-macosx_11_0_arm64.whl (113.1 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

linefit-1.1.0-cp38-cp38-macosx_10_14_x86_64.whl (124.3 kB view details)

Uploaded CPython 3.8macOS 10.14+ x86-64

File details

Details for the file linefit-1.1.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f55f8e62875dca0adbdad8ceb770028cb70af3884d69c6409123e3340b6e4b47
MD5 ec1d7e877ed9c179e9558e4912b240e9
BLAKE2b-256 0d14b2b82671ab150561da157fa1861a2774b9b3d7cdf6a52638ba4627967425

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a003c9452f5c185aec79abc0b8d90b3e2dd3ef5f64ed75fac652c365952dcdd8
MD5 4e044852e57bdc5e167193a7701dc20e
BLAKE2b-256 94911c0efcad3d115eed316884121fcd7a623cba65afa88e7035ff304c1cebba

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3216fbb42eb178191dad636bb00fda33edaba128cde6345939574fd3eb9949fa
MD5 3274d59c8db4a0d303f6b106a6c8d386
BLAKE2b-256 85fab77523dc11bda2fbd32e08ec3d71867d4a68f4898095b8633767b0b52f57

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp310-pypy310_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp310-pypy310_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4a035e7834b1f67b8f348ad8b35dc6d18f4a204f18ec88acbcab3fd8849238aa
MD5 41273ca8170ad000dcc0f2a3add6c12e
BLAKE2b-256 513da6f9c7a09e5e19a0db6077751a21bd0944d6819f12fa2ece958dac913ccd

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 096be7797845a2d3bfa676765602a3ffd9f6d13a2c79e8baad809cf374601aa1
MD5 6ae8bcc72b5bbadc93cfe06537d6d8fd
BLAKE2b-256 eb5ec953ce1dba10cb22250b1303518f99d05ff8bb8615f3be6e92fe8bec40ad

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fda4c8fa3b7b9e86e2963f43c898239f658dd2ec38139c40f2b24624a42e9d79
MD5 910080c15fc2cb13f7fad3771a51f1a0
BLAKE2b-256 9450c9cb42e9528f3a00548170a0f0a1a69b1567b965eebbb2d675f1f9b09a06

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e648a16b182d99551be153632096f69aa73dc28a995141a7b3276b055113214a
MD5 dbe546e0e352e0b56ee42d33115f3581
BLAKE2b-256 9e52908fe5eed2c3ad3f7f64c8ce3bb26d6ecebcd8d2ed61c5271f8a8944fec4

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp39-pypy39_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp39-pypy39_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 27acbe1af260c325a1a2fb49dbccdf0c45133d49c146c4e791edda23c80b99ae
MD5 e674899d51a8c85f40770436ad97b2da
BLAKE2b-256 518bf76c45093a5bfd362adc4a396d178d232fe0395718eaa55b657f5525bb68

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0c7bc1d0b8b5846c75107eb52afc039e7f34d3770260232a3a7490808aacc705
MD5 cd8c7d7e339d7585cfeb0aef5bafbae8
BLAKE2b-256 6b81b61ebb0b8b796d250a4ce9c7b2f856c444e88aed01679a6c0b54f0b5ec0f

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c924e728b4215b50dbf3210119d7b33eafafca8d0bd2a944909a9e50b00d4db
MD5 adc807358f9403cbfa6d72e655a97f0c
BLAKE2b-256 9043bf63f8f52ec5ec75417d770920cbae99514b48c1cfd6d5b621d6b2aa4e54

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b8c196cb69ed353162513a39c53b9c7b6381a277c07793f576235809a36762d
MD5 091a10ced9a62e19ce738ce6ecd555e5
BLAKE2b-256 6aa45c63148640f9af2d49dffcfbc69ccd36fbf28a396089fbd1346ea7c35809

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-pp38-pypy38_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-pp38-pypy38_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 473d5e8a02d636f69444e0ed37fe1f82c60d8d799bdb478c02274c9c65da61d1
MD5 478c032002750ada83e66926dd2ef030
BLAKE2b-256 14059ec9092929ff66e366976a349f3cf3ea7229c68b4d4261521201876defbc

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: linefit-1.1.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 131.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for linefit-1.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ca426c32e5694c1ac57531ee76a0d81355b2a9ad6f003fc0b58b7b7f0165d9e2
MD5 d7281c270a41704f0134fa02857da6f6
BLAKE2b-256 245b7c16eaa749d81c24acc20155ef5aed2d878f55a2df44074a9bbe3751f6b3

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f7f754a38ce80bd1b6e48ce4bf2839f5715ec742064a12bcb862ad450a89aa9f
MD5 b0cca7e99b0eb3e9a6b23933b08bd252
BLAKE2b-256 f5acba62ea1e797acb1192bead1f0ce07e5ce35aee4a0eebd0d35886e29dc8df

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34ca8a912d79453d11224629ece88ba9555128242305e45856425d1e6c7eaf10
MD5 b77fb65ff3a8989cfa9cbb2aea2aed87
BLAKE2b-256 27fa8d54ef1d021e21e1d450efa46782c27def30542e6aa45babbdb2d21ff9fe

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7de95708ec5d72a0225e01b4cb26a403b9847491dda6e391b000a905f8930e3c
MD5 46d212c44cd2b0e9930813a59ce211ae
BLAKE2b-256 f868b5948c01993f74e9be8fa27c0e940c34367bbb539fd4ef485f5d7681f6fc

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e7134597006887b9532bfdb823cde38fa299e18c577d04365dfe3fab9cc51e18
MD5 9de68bca69b3fff4717404c6d20a26fa
BLAKE2b-256 81406b3b6b483cc0b2d0dd68a051b1a3a2f133006b6ff12d17f03c7e40d3ca95

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: linefit-1.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 131.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for linefit-1.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 19d3456e961c5e888cef2d80595aaf14853dd5c88ecb457221b17110272dad60
MD5 6808f66d0e7b0813740e715172fac940
BLAKE2b-256 6dd3f1111f5edf092e531bb5d19c549eb6b6d95b54df7dad1dbf597a80857fa0

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5d64ecb41838b89266c04056b0ac77c3aac91c258e56767fbf746aa3fabc0b78
MD5 a228bb5b983c7a6b37c1165f97de53ce
BLAKE2b-256 b6d358cf660ec8bf7ead79a74376be0a541ce59f86bc74f148d0f4ffc81c9f18

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2c6f1a5f4084097cb27dc22499e59413021317420f2c9edda6f7ec7230416e8
MD5 d944a02c64d27dc1f5781af6ad107436
BLAKE2b-256 276da0d00807306d75bb189e21364e973e16f4009f85c36f6714bdb5b8552189

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1594bf51a658e2861059025a155bab81674bb3e6f9f73a2316a716dcd0972746
MD5 b06af3e601ff9e10710a96f9cb52a2bb
BLAKE2b-256 fc94fab6029e22a48c75220ff0c47d1e8882a8aab7ddbd3907e49f7983b92833

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 13c0cc95749b6e80ee193f045fea0a9eefac47bec43ea384dbd3fd8c867690b3
MD5 723149c43c5735d4a45a0f53ee34d23b
BLAKE2b-256 04561e56d2be9034d51d46be515d01a299ecda7944ada7d0913fd6607f2800d8

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: linefit-1.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 131.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for linefit-1.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 399281c60c09de3b07d6405f9e0e4f0542feb878f8f5f0d23555ce7d2b8ab0ad
MD5 56a3363605cb7386863f5e6c4a3fbcfa
BLAKE2b-256 92d8ea5f00942987da3008260100a67dc18bc8c4fe5cc430e429034775ae81b9

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4574c46e698fda1279a380caad1274eb351549b253ac0e1a65eb6c96dc8258f5
MD5 2c0c19cebcd1b18e74c3142ba9cb97c2
BLAKE2b-256 21e6985cfb5ef9d594555ee2dead81ab27faab93bc07a9a82653816f7c647b9b

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ae6fa00d2e1789ce850ed29a126c4d0597de3716d99ef360f65f427d7a3b9d7
MD5 4a2cddcebbe2ab948d80de1fd1428e5f
BLAKE2b-256 2551b248c47d230680bf2aad07470842d0c647d01265534bb87a34d6c1a98a8c

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e59e7b096fadf76fff1d5c22af1fb92a119264030b5c11d0742db7dc612ecbba
MD5 606177710b19d0089b9ae7b96681cd9b
BLAKE2b-256 46ee464d1c5a4b60863b910aa22d3d5a214e42c551a4992240d8f6ec7cfeec30

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 116b06725916de0c07847be45701572b66e442fb74cfa5380cf8ad5b2596576c
MD5 f00ba75ba2fae011c2d79182f6bc33bc
BLAKE2b-256 238cbcd1a4af74ae4d45092dbc398e7199b1bc46c06baed2f53facb3152da1e4

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: linefit-1.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 132.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for linefit-1.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0930436653b78d087fed2ce54aad44dd553ad91108a81ec823ee73fded681491
MD5 0b009338bfd3fca440a6bbbee1575c06
BLAKE2b-256 c3fe5c41d32d91f573d73fb43dca6be808935a81f71926c5b46fe51bd58988b9

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e2ec5aea14ba03e0a8ae23059bff37324961e054ffe137b5075aaf4b2fd7b06e
MD5 df998e432baab26e34a7e9efba01a775
BLAKE2b-256 6668babbe3a2d3ab07c9a91ebb597165e2934a9a955e949651ca87e96c90f3c4

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49d92719e9717950814e7f7a1b56bb25efc79ebe1b2a778da71024c89c847da3
MD5 4b591bf3ea4ecb2c0787a75e298ed6b2
BLAKE2b-256 c3d63262129c155e02591630d77cdf830d71ca2050dfd9cc7f5c7b58ab7d9b8a

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7b72ce43c1b804964ae44e4aff81e7447da63d80ac15209eef9e8429020d67d
MD5 be86c40bfce8725b761b205fe47c2901
BLAKE2b-256 b7000a0bd0e13bc474c47557c28cfdc1c455c75aa28be85957a7e247e7b9ddb1

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3047ee5242590e29299407c32662318151bbad41f44507ac2b3b230d54eaf462
MD5 065b53ae2004896c1ffc20008a584121
BLAKE2b-256 2f486a076a267e9d6656c39b9c01d7aba48a0f72fb83252e1c873f9b2e635843

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: linefit-1.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 131.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for linefit-1.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f62897c1bf3e644158a1025ae6489e9d92b1a68694796837256e6fa569e972e1
MD5 7aa4e4c82e94aa79d1000f707fe3332a
BLAKE2b-256 8c254d62bfbe7021ca3864d1b0640b461ac6833af5b5c65bc34f916f35bafff3

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dbe58f89c7eae12a2f478eb82907a709c4cbf114e665c8f3c289c2d898f0d3de
MD5 fe49ead05dbca097949f7799d111e538
BLAKE2b-256 3166d49e1e0be12af7c8dc73dcec2fd0b421a542623b6cf018a7ec083ff2a5b3

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45c52abdfd3d46e27eeef855d9942e2f6b9278b4366e15bd0f55cbac2ea08c05
MD5 f3068f3f6a7282291d24995323e1b7c7
BLAKE2b-256 4795d75bd1f2934cd8cf38d94e7197a545736bf718932bad4397476dcd1771a2

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 48306797f2d7ded37a0098ac1364d31d2fed74092cd2ec389f170a279131c081
MD5 09cc176d91549a7e6b1f1f1d9caa07f1
BLAKE2b-256 cbe29aa26ed92aa76d1650d514a4a8aae417ee2eb0953740d01e154681fff390

See more details on using hashes here.

File details

Details for the file linefit-1.1.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.1.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1db11508a6fad0e336808383d03b3a62f7dadf302cf5072843d86898e9eee519
MD5 9de183b15e4bd72c359b3086a9ea8013
BLAKE2b-256 91a763f044c4d0565d9b0030249758eda4870e1aea790806827cea76c9522d95

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page