Skip to main content

LiNGAM Python Package

Project description

LiNGAM - Discovery of non-gaussian linear causal models

License Read the Docs

LiNGAM is a new method for estimating structural equation models or linear Bayesian networks. It is based on using the non-Gaussianity of the data.


  • Python3
  • numpy
  • scipy
  • scikit-learn


To install lingam package, use pip as follows:

$ pip install lingam


Tutrial and API reference


This project is licensed under the terms of the MIT license.

Reference Papers

  • S. Shimizu, P. O. Hoyer, A. Hyvテ、rinen and A. Kerminen. A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7: 2003--2030, 2006. [PDF]
  • S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvテ、rinen, Y. Kawahara, T. Washio, P. O. Hoyer and K. Bollen. DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model. Journal of Machine Learning Research, 12(Apr): 1225--1248, 2011. [PDF]
  • A. Hyvテ、rinen and S. M. Smith. Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. Journal of Machine Learning Research, 14(Jan): 111--152, 2013. [PDF]
  • S. Shimizu. Joint estimation of linear non-Gaussian acyclic models. Neurocomputing, 81: 104-107, 2012. [PDF]

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for lingam, version 1.1.0
Filename, size File type Python version Upload date Hashes
Filename, size lingam-1.1.0-py3-none-any.whl (18.1 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size lingam-1.1.0.tar.gz (11.3 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page