Skip to main content

Linear optimization with N-D labeled arrays in Python

Project description

linopy: Optimization with array-like variables and constraints

PyPI License Tests doc codecov

        Linear
        Integer
        Non-linear
        Optimization in
        PYthon

linopy is an open-source python package that facilitates optimization with real world data. It builds a bridge between data analysis packages like xarray & pandas and problem solvers like cbc, gurobi (see the full list below). Linopy supports Linear, Integer, Mixed-Integer and Quadratic Programming while aiming to make linear programming in Python easy, highly-flexible and performant.

Benchmarks

linopy is designed to be fast and efficient. The following benchmark compares the performance of linopy with the alternative popular optimization packages.

Performance Benchmark

Main features

linopy is heavily based on xarray which allows for many flexible data-handling features:

  • Define (arrays of) continuous or binary variables with coordinates, e.g. time, consumers, etc.
  • Apply arithmetic operations on the variables like adding, substracting, multiplying with all the broadcasting potentials of xarray
  • Apply arithmetic operations on the linear expressions (combination of variables)
  • Group terms of a linear expression by coordinates
  • Get insight into the clear and transparent data model
  • Modify and delete assigned variables and constraints on the fly
  • Use lazy operations for large linear programs with dask
  • Choose from different commercial and non-commercial solvers
  • Fast import and export a linear model using xarray's netcdf IO

Installation

So far linopy is available on the PyPI repository

pip install linopy

or on conda-forge

conda install -c conda-forge linopy

In a Nutshell

Linopy aims to make optimization programs transparent and flexible. To illustrate its usage, let's consider a scenario where we aim to minimize the cost of buying apples and bananas over a week, subject to daily and weekly vitamin intake constraints.

>>> import pandas as pd
>>> import linopy

>>> m = linopy.Model()

>>> days = pd.Index(["Mon", "Tue", "Wed", "Thu", "Fri"], name="day")
>>> apples = m.add_variables(lower=0, name="apples", coords=[days])
>>> bananas = m.add_variables(lower=0, name="bananas", coords=[days])
>>> apples
Variable (day: 5)
-----------------
[Mon]: apples[Mon] ∈ [0, inf]
[Tue]: apples[Tue] ∈ [0, inf]
[Wed]: apples[Wed] ∈ [0, inf]
[Thu]: apples[Thu] ∈ [0, inf]
[Fri]: apples[Fri] ∈ [0, inf]

Add daily vitamin constraints

>>> m.add_constraints(3 * apples + 2 * bananas >= 8, name="daily_vitamins")
Constraint `daily_vitamins` (day: 5):
-------------------------------------
[Mon]: +3 apples[Mon] + 2 bananas[Mon] ≥ 8
[Tue]: +3 apples[Tue] + 2 bananas[Tue] ≥ 8
[Wed]: +3 apples[Wed] + 2 bananas[Wed] ≥ 8
[Thu]: +3 apples[Thu] + 2 bananas[Thu] ≥ 8
[Fri]: +3 apples[Fri] + 2 bananas[Fri] ≥ 8

Add weekly vitamin constraint

>>> m.add_constraints((3 * apples + 2 * bananas).sum() >= 50, name="weekly_vitamins")
Constraint `weekly_vitamins`
----------------------------
+3 apples[Mon] + 2 bananas[Mon] + 3 apples[Tue] ... +2 bananas[Thu] + 3 apples[Fri] + 2 bananas[Fri] ≥ 50

Define the prices of apples and bananas and the objective function

>>> apple_price = [1, 1.5, 1, 2, 1]
>>> banana_price = [1, 1, 0.5, 1, 0.5]
>>> m.objective = apple_price * apples + banana_price * bananas

Finally, we can solve the problem and get the optimal solution:

>>> m.solve()
>>> m.objective.value
17.166

... and display the solution as a pandas DataFrame

>>> m.solution.to_pandas()
        apples  bananas
day
Mon    2.667      0
Tue    0          4
Wed    0          9
Thu    0          4
Fri    0          4

Supported solvers

linopy supports the following solvers

Note that these do have to be installed by the user separately.

Development Setup

To set up a local development environment for linopy and to run the same tests that are run in the CI, you can run:

python -m venv venv
source venv/bin/activate
pip install uv
uv pip install -e .[dev,solvers]
pytest

The -e flag of the install command installs the linopy package in editable mode, which means that the virtualenv (and thus the tests) will run the code from your local checkout.

Citing Linopy

If you use Linopy in your research, please cite the following paper:

A BibTeX entry for LaTeX users is

@article{Hofmann2023,
    doi = {10.21105/joss.04823},
    url = {https://doi.org/10.21105/joss.04823},
    year = {2023}, publisher = {The Open Journal},
    volume = {8},
    number = {84},
    pages = {4823},
    author = {Fabian Hofmann},
    title = {Linopy: Linear optimization with n-dimensional labeled variables},
    journal = {Journal of Open Source Software}
}

License

Copyright 2021 Fabian Hofmann

This package is published under MIT license. See LICENSE.txt for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

linopy-0.6.1.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

linopy-0.6.1-py3-none-any.whl (113.9 kB view details)

Uploaded Python 3

File details

Details for the file linopy-0.6.1.tar.gz.

File metadata

  • Download URL: linopy-0.6.1.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for linopy-0.6.1.tar.gz
Algorithm Hash digest
SHA256 d5a4d8ac167eaa1edd209c24526e0471451f12e2dfdfcf869865c95db4ececc5
MD5 a7ee69cfb45439add60685547b29e17f
BLAKE2b-256 d560c6596815db432afd6785cbb9aed5da0fe12d53223591f441151161ea85ca

See more details on using hashes here.

Provenance

The following attestation bundles were made for linopy-0.6.1.tar.gz:

Publisher: release.yml on PyPSA/linopy

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file linopy-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: linopy-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 113.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for linopy-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3b8abbd394c8c9e0506226e7e98fdcf101a7f29f5e1996414252973c367ae6f1
MD5 36f7cbbb092902276313cba1d38910b7
BLAKE2b-256 53d351a841a72a4d7452f2133de770effae6019836228580e6d31b3f9c278dc9

See more details on using hashes here.

Provenance

The following attestation bundles were made for linopy-0.6.1-py3-none-any.whl:

Publisher: release.yml on PyPSA/linopy

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page