Skip to main content

LlamaIndex integrations for Google Cloud AlloyDB for PostgreSQL

Project description

preview pypi versions

The AlloyDB for PostgreSQL for LlamaIndex package provides a first class experience for connecting to AlloyDB instances from the LlamaIndex ecosystem while providing the following benefits:

  • Simplified & Secure Connections: easily and securely create shared connection pools to connect to Google Cloud databases utilizing IAM for authorization and database authentication without needing to manage SSL certificates, configure firewall rules, or enable authorized networks.

  • Better integration with AlloyDB: built-in methods to take advantage of AlloyDB’s advanced indexing and scalability capabilities.

  • Improved metadata handling: store metadata in columns instead of JSON, resulting in significant performance improvements.

  • Clear separation: clearly separate table and extension creation, allowing for distinct permissions and streamlined workflows.

Quick Start

In order to use this library, you first need to go through the following steps:

  1. Select or create a Cloud Platform project.

  2. Enable billing for your project.

  3. Enable the AlloyDB API.

  4. Setup Authentication.

Installation

Install this library in a virtualenv using pip. virtualenv is a tool to create isolated Python environments. The basic problem it addresses is one of dependencies and versions, and indirectly permissions.

With virtualenv, it’s possible to install this library without needing system install permissions, and without clashing with the installed system dependencies.

Supported Python Versions

Python >= 3.9

Mac/Linux

pip install virtualenv
virtualenv <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install llama-index-alloydb-pg

Windows

pip install virtualenv
virtualenv <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install llama-index-alloydb-pg

Example Usage

Code samples and snippets live in the samples/ folder.

Vector Store Usage

Use a vector store to store embedded data and perform vector search.

import google.auth
from llama_index.core import Settings
from llama_index.embeddings.vertex import VertexTextEmbedding
from llama_index_alloydb_pg import AlloyDBEngine, AlloyDBVectorStore


credentials, project_id = google.auth.default()
engine = await AlloyDBEngine.afrom_instance(
   "project-id", "region", "my-cluster", "my-instance", "my-database"
)
Settings.embed_model = VertexTextEmbedding(
   model_name="textembedding-gecko@003",
   project="project-id",
   credentials=credentials,
)

vector_store = await AlloyDBVectorStore.create(
   engine=engine, table_name="vector_store"
)

Chat Store Usage

A chat store serves as a centralized interface to store your chat history.

from llama_index.core.memory import ChatMemoryBuffer
from llama_index_cloud_sql_pg import AlloyDBChatStore, AlloyDBEngine


engine = await AlloyDBEngine.afrom_instance(
   "project-id", "region", "my-cluster", "my-instance", "my-database"
)
chat_store = await AlloyDBChatStore.create(
   engine=engine, table_name="chat_store"
)
memory = ChatMemoryBuffer.from_defaults(
   token_limit=3000,
   chat_store=chat_store,
   chat_store_key="user1",
)

Document Reader Usage

A Reader ingest data from different data sources and data formats into a simple Document representation.

from llama_index.core.memory import ChatMemoryBuffer
from llama_index_cloud_sql_pg import AlloyDBReader, AlloyDBEngine


engine = await AlloyDBEngine.afrom_instance(
   "project-id", "region", "my-cluster", "my-instance", "my-database"
)
reader = await AlloyDBReader.create(
   engine=engine, table_name="my-db-table"
)
documents = reader.load_data()

Document Store Usage

Use a document store to make storage and maintenance of data easier.

from llama_index_alloydb_pg import AlloyDBEngine, AlloyDBDocumentStore


engine = await AlloyDBEngine.afrom_instance(
   "project-id", "region", "my-cluster", "my-instance", "my-database"
)
doc_store = await AlloyDBDocumentStore.create(
   engine=engine, table_name="doc_store"
)

Index Store Usage

Use an index store to keep track of indexes built on documents.

from llama_index_alloydb_pg import AlloyDBIndexStore, AlloyDBEngine


engine = await AlloyDBEngine.from_instance(
   "project-id", "region", "my-cluster", "my-instance", "my-database"
)
index_store = await AlloyDBIndexStore.create(
   engine=engine, table_name="index_store"
)

Contributions

Contributions to this library are always welcome and highly encouraged.

See CONTRIBUTING for more information how to get started.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms. See Code of Conduct for more information.

License

Apache 2.0 - See LICENSE for more information.

Disclaimer

This is not an officially supported Google product.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_alloydb_pg-0.2.3.tar.gz (62.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

llama_index_alloydb_pg-0.2.3-py3-none-any.whl (51.3 kB view details)

Uploaded Python 3

File details

Details for the file llama_index_alloydb_pg-0.2.3.tar.gz.

File metadata

  • Download URL: llama_index_alloydb_pg-0.2.3.tar.gz
  • Upload date:
  • Size: 62.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.11.2

File hashes

Hashes for llama_index_alloydb_pg-0.2.3.tar.gz
Algorithm Hash digest
SHA256 c0923d911e74d1975fcfe187763d20b830d185398f0451c01b5609c40a31eccd
MD5 e100a4e6786e03c94b08c9c9131dbb5c
BLAKE2b-256 ac91762995f9ad1c14ebddefd7e2222a310750ab56d002471c51238068591983

See more details on using hashes here.

File details

Details for the file llama_index_alloydb_pg-0.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_alloydb_pg-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0feb6ed54355f0a940afc79f7f9e1812992aa9012acde026386e042c84f39067
MD5 1c7a3a394b859299f97594926f09a3cc
BLAKE2b-256 0716a194d585fe5ae2933d948e173131baa268ee7918419213749aaf5ccd3433

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page