Skip to main content

Interface between LLMs and your data

Project description

🗂️ LlamaIndex 🦙

PyPI - Downloads GitHub contributors Discord

LlamaIndex (GPT Index) is a data framework for your LLM application.

PyPI:

LlamaIndex.TS (Typescript/Javascript): https://github.com/run-llama/LlamaIndexTS.

Documentation: https://docs.llamaindex.ai/en/stable/.

Twitter: https://twitter.com/llama_index.legacy.

Discord: https://discord.gg/dGcwcsnxhU.

Ecosystem

🚀 Overview

NOTE: This README is not updated as frequently as the documentation. Please check out the documentation above for the latest updates!

Context

  • LLMs are a phenomenal piece of technology for knowledge generation and reasoning. They are pre-trained on large amounts of publicly available data.
  • How do we best augment LLMs with our own private data?

We need a comprehensive toolkit to help perform this data augmentation for LLMs.

Proposed Solution

That's where LlamaIndex comes in. LlamaIndex is a "data framework" to help you build LLM apps. It provides the following tools:

  • Offers data connectors to ingest your existing data sources and data formats (APIs, PDFs, docs, SQL, etc.).
  • Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs.
  • Provides an advanced retrieval/query interface over your data: Feed in any LLM input prompt, get back retrieved context and knowledge-augmented output.
  • Allows easy integrations with your outer application framework (e.g. with LangChain, Flask, Docker, ChatGPT, anything else).

LlamaIndex provides tools for both beginner users and advanced users. Our high-level API allows beginner users to use LlamaIndex to ingest and query their data in 5 lines of code. Our lower-level APIs allow advanced users to customize and extend any module (data connectors, indices, retrievers, query engines, reranking modules), to fit their needs.

💡 Contributing

Interested in contributing? See our Contribution Guide for more details.

📄 Documentation

Full documentation can be found here: https://docs.llamaindex.ai/en/latest/.

Please check it out for the most up-to-date tutorials, how-to guides, references, and other resources!

💻 Example Usage

pip install llama-index

Examples are in the examples folder. Indices are in the indices folder (see list of indices below).

To build a simple vector store index using OpenAI:

import os

os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"

from llama_index.legacy import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
index = VectorStoreIndex.from_documents(documents)

To build a simple vector store index using non-OpenAI LLMs, e.g. Llama 2 hosted on Replicate, where you can easily create a free trial API token:

import os

os.environ["REPLICATE_API_TOKEN"] = "YOUR_REPLICATE_API_TOKEN"

from llama_index.legacy.llms import Replicate

llama2_7b_chat = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e"
llm = Replicate(
    model=llama2_7b_chat,
    temperature=0.01,
    additional_kwargs={"top_p": 1, "max_new_tokens": 300},
)

# set tokenizer to match LLM
from llama_index.legacy import set_global_tokenizer
from transformers import AutoTokenizer

set_global_tokenizer(
    AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf").encode
)

from llama_index.legacy.embeddings import HuggingFaceEmbedding
from llama_index.legacy import ServiceContext

embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
service_context = ServiceContext.from_defaults(
    llm=llm, embed_model=embed_model
)

from llama_index.legacy import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
index = VectorStoreIndex.from_documents(
    documents, service_context=service_context
)

To query:

query_engine = index.as_query_engine()
query_engine.query("YOUR_QUESTION")

By default, data is stored in-memory. To persist to disk (under ./storage):

index.storage_context.persist()

To reload from disk:

from llama_index.legacy import StorageContext, load_index_from_storage

# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir="./storage")
# load index
index = load_index_from_storage(storage_context)

🔧 Dependencies

The main third-party package requirements are tiktoken, openai, and langchain.

All requirements should be contained within the setup.py file. To run the package locally without building the wheel, simply run:

pip install poetry
poetry install --with dev

📖 Citation

Reference to cite if you use LlamaIndex in a paper:

@software{Liu_LlamaIndex_2022,
author = {Liu, Jerry},
doi = {10.5281/zenodo.1234},
month = {11},
title = {{LlamaIndex}},
url = {https://github.com/jerryjliu/llama_index},
year = {2022}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_legacy-0.0.2.tar.gz (29.3 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

llama_index_legacy-0.0.2-py3-none-any.whl (29.8 MB view details)

Uploaded Python 3

File details

Details for the file llama_index_legacy-0.0.2.tar.gz.

File metadata

  • Download URL: llama_index_legacy-0.0.2.tar.gz
  • Upload date:
  • Size: 29.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.0 Linux/5.10.102.1-microsoft-standard-WSL2

File hashes

Hashes for llama_index_legacy-0.0.2.tar.gz
Algorithm Hash digest
SHA256 195034fa4c95738005aafe46d6ef17bf4515b78faba0d037551b828d1a2ed47d
MD5 c4306c50d9e9797ff7b213d90f905785
BLAKE2b-256 e6c418d5e39a1b3d3728d47be1bcc9687ca129c5c5eb41974f9f57da9a701cda

See more details on using hashes here.

File details

Details for the file llama_index_legacy-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: llama_index_legacy-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 29.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.0 Linux/5.10.102.1-microsoft-standard-WSL2

File hashes

Hashes for llama_index_legacy-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 830c0cf694ff2ee7f30b21177ceb8098b8512980527c1f65ccff32d9fbd990b5
MD5 45cb44a0aed72b72485b3249e07eaf72
BLAKE2b-256 0d3c83a923f3fafaa18bfdd47b008bb95ff6ed29ab14fb4e9d6bd3e0e45c8bc9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page