Skip to main content

llama-index llms bedrock integration

Project description

LlamaIndex Llms Integration: Bedrock

Installation

%pip install llama-index-llms-bedrock
!pip install llama-index

Basic Usage

from llama_index.llms.bedrock import Bedrock

# Set your AWS profile name
profile_name = "Your aws profile name"

# Simple completion call
resp = Bedrock(
    model="amazon.titan-text-express-v1", profile_name=profile_name
).complete("Paul Graham is ")
print(resp)

# Expected output:
# Paul Graham is a computer scientist and entrepreneur, best known for co-founding
# the Silicon Valley startup incubator Y Combinator. He is also a prominent writer
# and speaker on technology and business topics...

Call chat with a list of messages

from llama_index.core.llms import ChatMessage
from llama_index.llms.bedrock import Bedrock

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality"
    ),
    ChatMessage(role="user", content="Tell me a story"),
]

resp = Bedrock(
    model="amazon.titan-text-express-v1", profile_name=profile_name
).chat(messages)
print(resp)

# Expected output:
# assistant: Alright, matey! Here's a story for you: Once upon a time, there was a pirate
# named Captain Jack Sparrow who sailed the seas in search of his next adventure...

Streaming

Using stream_complete endpoint

from llama_index.llms.bedrock import Bedrock

llm = Bedrock(model="amazon.titan-text-express-v1", profile_name=profile_name)
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

# Expected Output (Stream):
# Paul Graham is a computer programmer, entrepreneur, investor, and writer, best known
# for co-founding the internet firm Y Combinator...

Streaming chat

from llama_index.llms.bedrock import Bedrock

llm = Bedrock(model="amazon.titan-text-express-v1", profile_name=profile_name)
messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality"
    ),
    ChatMessage(role="user", content="Tell me a story"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

# Expected Output (Stream):
# Once upon a time, there was a pirate with a colorful personality who sailed the
# high seas in search of adventure...

Configure Model

from llama_index.llms.bedrock import Bedrock

llm = Bedrock(model="amazon.titan-text-express-v1", profile_name=profile_name)
resp = llm.complete("Paul Graham is ")
print(resp)

# Expected Output:
# Paul Graham is a computer scientist, entrepreneur, investor, and writer. He co-founded
# Viaweb, the first commercial web browser...

Connect to Bedrock with Access Keys

from llama_index.llms.bedrock import Bedrock

llm = Bedrock(
    model="amazon.titan-text-express-v1",
    aws_access_key_id="AWS Access Key ID to use",
    aws_secret_access_key="AWS Secret Access Key to use",
    aws_session_token="AWS Session Token to use",
    region_name="AWS Region to use, e.g. us-east-1",
)

resp = llm.complete("Paul Graham is ")
print(resp)

# Expected Output:
# Paul Graham is an American computer scientist, entrepreneur, investor, and author,
# best known for co-founding Viaweb, the first commercial web browser...

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/bedrock/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_bedrock-0.3.8.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

llama_index_llms_bedrock-0.3.8-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file llama_index_llms_bedrock-0.3.8.tar.gz.

File metadata

  • Download URL: llama_index_llms_bedrock-0.3.8.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Linux/6.8.0-1021-azure

File hashes

Hashes for llama_index_llms_bedrock-0.3.8.tar.gz
Algorithm Hash digest
SHA256 8ca2914842a1d09079c35429b15dc50659d697ae84a15a89076a12f90505800e
MD5 1b81becad9deed98d099f0d225068cbd
BLAKE2b-256 aeb1f7172ba0c6d808863ea545a2b99c7b4a51b8109caba9df67e44cd8971ca5

See more details on using hashes here.

File details

Details for the file llama_index_llms_bedrock-0.3.8-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_bedrock-0.3.8-py3-none-any.whl
Algorithm Hash digest
SHA256 58b804a206146bd7228590a4ee92ce13806a21040d92cb61e3046f2ee64f66cd
MD5 f96e7f162c8f9882613bbd89da12d70f
BLAKE2b-256 ff2f7fc5206467151f64764bae61abd0fbbb8392fe84def15b1467f7fb174d7b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page