Skip to main content

llama-index postprocessor bedrock rerank integration

Project description

LlamaIndex Postprocessor Integration: AWS Bedrock Rerankers

Sample Usage

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.postprocessor.bedrock_rerank import BedrockRerank


documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(documents=documents)
reranker = BedrockRerank(
    top_n=3,
    rerank_model_name="cohere.rerank-v3-5:0",
    region_name="us-west-2",
)
query_engine = index.as_query_engine(
    similarity_top_k=10,
    node_postprocessors=[reranker],
)
response = query_engine.query(
    "What did Sam Altman do in this essay?",
)

print(response)

print(response.source_nodes)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_postprocessor_bedrock_rerank-0.4.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_postprocessor_bedrock_rerank-0.4.0.tar.gz
Algorithm Hash digest
SHA256 f8fe455722eafba2abfaa90e704a2be59626d78ffd4e1825887ac6afe0818f35
MD5 4ac9d1dfd268d39c5cadf6891296c3aa
BLAKE2b-256 e83eb0c5f0dee023f803e84f98c4127aaa08e5ead041e7109ba5a6f9fa6714f7

See more details on using hashes here.

File details

Details for the file llama_index_postprocessor_bedrock_rerank-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_postprocessor_bedrock_rerank-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bf21aaba2e63ce4ef041adca7bf01d54a5b19227df6de14daec50659f22ee2d5
MD5 cf0a5743e3ab1236f2b2a2eb751a15a1
BLAKE2b-256 a1857c8570d691c9db77ead944e975fc10e2a4cc052c2cefcddfaab7d19e82aa

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page