Skip to main content

Llama Stack

Project description

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook | Discord

✨🎉 Llama 4 Support 🎉✨

We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.

👋 Click here to see how to run Llama 4 models on Llama Stack


Note you need 8xH100 GPU-host to run these models

pip install -U llama_stack

MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>

# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu

# install client to interact with the server
pip install llama-stack-client

CLI

# Run a chat completion
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"

ChatCompletionResponse(
    completion_message=CompletionMessage(content="Whispers in code born\nLlama's gentle, wise heartbeat\nFuture's soft unfold", role='assistant', stop_reason='end_of_turn', tool_calls=[]),
    logprobs=None,
    metrics=[Metric(metric='prompt_tokens', value=21.0, unit=None), Metric(metric='completion_tokens', value=28.0, unit=None), Metric(metric='total_tokens', value=49.0, unit=None)]
)

Python SDK

from llama_stack_client import LlamaStackClient

client = LlamaStackClient(base_url=f"http://localhost:8321")

model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"

print(f"User> {prompt}")
response = client.inference.chat_completion(
    model_id=model_id,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt},
    ],
)
print(f"Assistant> {response.completion_message.content}")

As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!

🚀 One-Line Installer 🚀

To try Llama Stack locally, run:

curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/install.sh | bash

Overview

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry Post Training
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted
watsonx Hosted
HuggingFace Single Node
TorchTune Single Node
NVIDIA NEMO Hosted

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_stack-0.2.13.tar.gz (3.3 MB view details)

Uploaded Source

Built Distribution

llama_stack-0.2.13-py3-none-any.whl (3.7 MB view details)

Uploaded Python 3

File details

Details for the file llama_stack-0.2.13.tar.gz.

File metadata

  • Download URL: llama_stack-0.2.13.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.11

File hashes

Hashes for llama_stack-0.2.13.tar.gz
Algorithm Hash digest
SHA256 be59570fde5e39224ea8358e2b04e6d92dc37a36a24f5fdf20c853f02793aaa2
MD5 c07949961c5e9db808817dc83459dc56
BLAKE2b-256 938f71efe6408ac0412e5d6f9cc2ceb984d4e4723f393dd05197ae1b6673ae94

See more details on using hashes here.

File details

Details for the file llama_stack-0.2.13-py3-none-any.whl.

File metadata

  • Download URL: llama_stack-0.2.13-py3-none-any.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.11

File hashes

Hashes for llama_stack-0.2.13-py3-none-any.whl
Algorithm Hash digest
SHA256 426c0cab38d561b25ce3f2eb757f26ea4bce9783ef80eb6d1dad1bb9bcc4e168
MD5 6bfc7e593f7b4ad28c7bf9df3ae31350
BLAKE2b-256 fef08b7cb34a1cea38ce32a0c997e5d71e04fbe6d410d1621f9467fbefef8d03

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page