Skip to main content

Python bindings for @ggerganov's llama.cpp

Project description

Python bindings for llama.cpp

Install

From PyPI

pip install llamacpp

Build from Source

pip install .

Get the model weights

You will need to obtain the weights for LLaMA yourself. There are a few torrents floating around as well as some huggingface repositories (e.g https://huggingface.co/nyanko7/LLaMA-7B/). Once you have them, copy them into the models folder.

ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model

Convert the weights to GGML format using llamacpp-convert. Then use llamacpp-quantize to quantize them into INT4. For example, for the 7B parameter model, run

llamacpp-convert ./models/7B/ 1
llamacpp-quantize ./models/7B/
llamacpp-cli

Note that running llamacpp-convert requires torch, sentencepiece and numpy to be installed. These packages are not installed by default when your install llamacpp.

Command line interface

The package installs the command line entry point llamacpp-cli that points to llamacpp/cli.py and should provide about the same functionality as the main program in the original C++ repository. There is also an experimental llamacpp-chat that is supposed to bring up a chat interface but this is not working correctly yet.

API

Documentation is TBD. But the long and short of it is that there are two interfaces

  • LlamaInference - this one is a high level interface that tries to take care of most things for you. The demo script below uses this.
  • LlamaContext - this is a low level interface to the underlying llama.cpp API. You can use this similar to how the main example in llama.cpp does uses the C API. This is a rough implementation and currently untested except for compiling successfully.

Demo script

See llamacpp/cli.py for a detailed example. The simplest demo would be something like the following:

import sys
import llamacpp


def progress_callback(progress):
    print("Progress: {:.2f}%".format(progress * 100))
    sys.stdout.flush()


params = llamacpp.InferenceParams.default_with_callback(progress_callback)
params.path_model = './models/7B/ggml-model-q4_0.bin'
model = llamacpp.LlamaInference(params)

prompt = "A llama is a"
prompt_tokens = model.tokenize(prompt, True)
model.update_input(prompt_tokens)

model.ingest_all_pending_input()

model.print_system_info()
for i in range(20):
    model.eval()
    token = model.sample()
    text = model.token_to_str(token)
    print(text, end="")
    
# Flush stdout
sys.stdout.flush()

model.print_timings()

ToDo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llamacpp-0.1.14.tar.gz (1.9 MB view details)

Uploaded Source

Built Distributions

llamacpp-0.1.14-cp311-cp311-win_amd64.whl (179.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

llamacpp-0.1.14-cp311-cp311-musllinux_1_1_x86_64.whl (770.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

llamacpp-0.1.14-cp311-cp311-musllinux_1_1_aarch64.whl (735.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

llamacpp-0.1.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (243.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

llamacpp-0.1.14-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (221.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

llamacpp-0.1.14-cp311-cp311-macosx_11_0_arm64.whl (194.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

llamacpp-0.1.14-cp311-cp311-macosx_10_9_x86_64.whl (217.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

llamacpp-0.1.14-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (401.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64 macOS 11.0+ universal2 (ARM64, x86-64)

llamacpp-0.1.14-cp310-cp310-win_amd64.whl (179.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

llamacpp-0.1.14-cp310-cp310-musllinux_1_1_x86_64.whl (770.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

llamacpp-0.1.14-cp310-cp310-musllinux_1_1_aarch64.whl (735.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

llamacpp-0.1.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (243.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

llamacpp-0.1.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (221.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

llamacpp-0.1.14-cp310-cp310-macosx_11_0_arm64.whl (194.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

llamacpp-0.1.14-cp310-cp310-macosx_10_9_x86_64.whl (217.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

llamacpp-0.1.14-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (401.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64 macOS 11.0+ universal2 (ARM64, x86-64)

llamacpp-0.1.14-cp39-cp39-win_amd64.whl (179.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

llamacpp-0.1.14-cp39-cp39-musllinux_1_1_x86_64.whl (770.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

llamacpp-0.1.14-cp39-cp39-musllinux_1_1_aarch64.whl (736.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

llamacpp-0.1.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (243.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

llamacpp-0.1.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (222.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

llamacpp-0.1.14-cp39-cp39-macosx_11_0_arm64.whl (194.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

llamacpp-0.1.14-cp39-cp39-macosx_10_9_x86_64.whl (217.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

llamacpp-0.1.14-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (401.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64 macOS 11.0+ universal2 (ARM64, x86-64)

llamacpp-0.1.14-cp38-cp38-win_amd64.whl (179.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

llamacpp-0.1.14-cp38-cp38-musllinux_1_1_x86_64.whl (770.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

llamacpp-0.1.14-cp38-cp38-musllinux_1_1_aarch64.whl (735.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

llamacpp-0.1.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (242.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

llamacpp-0.1.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (221.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

llamacpp-0.1.14-cp38-cp38-macosx_11_0_arm64.whl (194.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

llamacpp-0.1.14-cp38-cp38-macosx_10_9_x86_64.whl (217.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

llamacpp-0.1.14-cp38-cp38-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (401.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64 macOS 11.0+ universal2 (ARM64, x86-64)

llamacpp-0.1.14-cp37-cp37m-win_amd64.whl (178.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

llamacpp-0.1.14-cp37-cp37m-musllinux_1_1_x86_64.whl (774.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

llamacpp-0.1.14-cp37-cp37m-musllinux_1_1_aarch64.whl (740.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

llamacpp-0.1.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (246.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

llamacpp-0.1.14-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (226.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

llamacpp-0.1.14-cp37-cp37m-macosx_10_9_x86_64.whl (216.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file llamacpp-0.1.14.tar.gz.

File metadata

  • Download URL: llamacpp-0.1.14.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for llamacpp-0.1.14.tar.gz
Algorithm Hash digest
SHA256 e558af0778bc9a8335379eacaaf368d9d43966f19b05c445e200397a36c02152
MD5 7dbcf18269b00677fd33a68757a828e3
BLAKE2b-256 540b20b42971a0ec3110f7a57eb6d1f495bc833687aa39084c39100278536263

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 06b72ff0b71bbd392253e117272de1adaf61d2888cfa105da8c69f349b1f98ae
MD5 f5c74cfbd00cc67b0943a3aab6039f6d
BLAKE2b-256 127d0bc3a741099e8af079d755772072daea682f4ef90de1d786c8db1bf0bcdf

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e519e8f35ddc608db495230946da2df4376db5934873dc61ff34e77a842451a6
MD5 af8b34259dc433597456a40ed38ec3ee
BLAKE2b-256 10f7b9363cccc4409fe38482309e66cfce654c372cdd8a6b12ee4b2cab8a3d5f

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 67db633a3d62a4a5cbd54994b1ff7f7e37d9e1b3bbcb46521e48a67e6e909ce7
MD5 b8caef92efe0eb22a1fbcb363f6c658e
BLAKE2b-256 029d04f7ec0cc283b37fd3664e9e46064db42b949256cadcb5d3c297e5c0bc01

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee41eb9510e8d6c6b944d85c35fbfc51424dfb6953e21f5ab68664bb1c69f24e
MD5 9c9469c97684f87075715241e8c9f35c
BLAKE2b-256 56d4b51839d898960fa09527fcede8e2f0d8cf5b5842affb1f739c24ea9ad751

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb550c02b090a0f9fb33add8cd11eb7afc55126b035780873a37e6ffe3ba6217
MD5 b4431dc0fa041d935624aeb53f606e48
BLAKE2b-256 e8502895cecce9cd32f1a7d1cbaa43ee349e6844112b6dd8c2fae776364fc912

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 68284591487c23c0f14d7a8408586fa6a2f52a227fbf99710bb61095caf8eef2
MD5 7df62a5a02b21e3cc36b0631cbaca49f
BLAKE2b-256 c8d06edda7f6ac88cebdcad5ac5a2c35bfcc4fbd498f9075470154e07c2d428a

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5eb34a3755fabab53a8e9925a2924aa378f3fa992e1c1ac5a6bbad04101f3069
MD5 3ac86a8cc72205e72049af6f923ff183
BLAKE2b-256 509973a563bcc82ef76ebb14984361491a8c8381ac6efcde223384e8f3092ba2

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 c76c6a79340c053310db0047a292412bc846468fbfa833681753c335baf91939
MD5 d2841c5b299b22db4c1834b9ead3db3a
BLAKE2b-256 927426e11f7dee31a4ccb88947421fc18dc8b5450b1db61777a5c2432fc25b42

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 649f7d675d3b8237e13c02462b8225254c985eb3a5bcecc78c57f3ef0dc17067
MD5 a4b4a52d4a2881d0be8443f43f2fab6d
BLAKE2b-256 026a2576809146cfcf8e3b1b948d61938683a634222d83032a9e8fd17167f562

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ae81ff6e293b7798f1990acc371e2f759f53da4225ceeaf81d760a20b596abbd
MD5 89f0dd21e0cdd21555000a034815328d
BLAKE2b-256 a4c2d40709d939c35d1b91afc49ae165584e619983cd0f1dced3eee62e02da9f

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f21557b79f57970d0b243f5d84bbc608807ff7069855cc71bcd10611344f5d72
MD5 18a6a71e93eb341c41e46a244342eb97
BLAKE2b-256 f88d560d58bf8d814c360e12c18597a95f48d2dd7d24b1bd4b83afee84488d15

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0d77d7754183faf8eeed644b51679e5ff0676e308c12251d98521fa6f085871
MD5 767dccdbcfbe017ec2c7d777bd4870ec
BLAKE2b-256 3fbfb3b7e080b161c57a8c3b816efb9974112b54e09647e4a550d5393d93bb21

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3109beac3f9693f9f7b96d8b8ba3692369db1d6972fc80dfe2e85010e5396c9f
MD5 42d76805eb345dd8d703728b1f843b11
BLAKE2b-256 949c57259e5360609a1c77e3c622fa4ab45a55640fe068ade1a1054dbffb9177

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c32965163468f7cc617fc7ce6a722bbbc937d5a6ba1ddde95aa9cf8e80151fe3
MD5 c91147397a2d314185b541564e5766ca
BLAKE2b-256 67cafb6bd6dae02783b1d796286f32706f86701750347a9b3e12e6d117d89c74

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 955d9cb5077d6df39781dfad5668ff3b1b427e7208d5cf482422ebb44e7cadf5
MD5 a6e228c8f2869f4ebc009d5914903a71
BLAKE2b-256 54f570dd563eb8d6b11ba275db4f453bf78c8f35c1505ff8f443001df678997e

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 aacfef0774bf5a213ebbd29a151793f352d1ee31b8220b68582d53c19a82aaa4
MD5 96b15b585968e9dabbfea1842af2e459
BLAKE2b-256 960299448e4cd35df3f9786d464113633f14711f56c470cbf9aeaf926145fe0f

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: llamacpp-0.1.14-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 179.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for llamacpp-0.1.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 77663b939554b780e3208cea33c2938feb77d3594ddcbf42863c22cd9e87bdcb
MD5 ae9a6dcba367cc9fb3decdefb97eaf30
BLAKE2b-256 8cf61b45ab60a173f4b976b4fa12207b06c137076a72b9f10497bbc185f493d1

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 36fff86f13431cae3b1406716a40337c075ecce55481d104f7be685d064be394
MD5 708a8e890256235261d8d4c9fede8426
BLAKE2b-256 bb87bfc80c5ce29a2ffe2eaed70a222acd44b011c992fb1fa3c2a8312f92e3fb

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8c386e384d311b895b3da0b335d439e1fce5ea1ebb484730330009d514fd8b50
MD5 1b394abf5b636f220cc86606035fe71c
BLAKE2b-256 762845ddb14bfd667df46a7bf576ab0761f3befc5ac17c5729ec1ea4d4526ae2

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e220e6efb34eb26e5061e8c147c91c45ff529c6445f3fe63caa12a8f56fde9c
MD5 6d0a72625526ce3e4e3627f018a1b54c
BLAKE2b-256 28bd905c5202932a1a91149e3d7d80858fee64b7f9f3103f980b7638e41d2e50

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 362d042cc07629ff74fcc3c8b98aa86566b4649a3c186fd80c027af91db25c2f
MD5 e070d5c8c2a8bc0462c53915ec118d7f
BLAKE2b-256 c2d7e2294de6e28e4fc2a255391717a221f41748fdea84e0a50833311be346d2

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 52fecc05bfb6a7673e375508f307f9fa953bcf224043b69f3669f5358fd3a533
MD5 bae1d1e12928152f0d052fccee52083e
BLAKE2b-256 a9cb2bedb6fb8482b61ad9b2eb42da1b432eee2c35f9c80b5fec7815f4f41045

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5949bc02c3e15b38142e2985892bc0271a5fa53794e9c2dc0db469433e5657b9
MD5 6d663d40fee72c4a5b93311a71017a00
BLAKE2b-256 f47fa689d4e4a91e6272bbdfffbedfaebe06d54dfffcad71bb6364d0585d4106

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 c756d8a7df225ecc18ef869e344da17b9c3ce1d769f589f8e0933b2066f571e6
MD5 1044f8c7a8ce780748a481bc79fab0e3
BLAKE2b-256 aa1809019f7a9dfc468433bb38d5b2900dc9ea8c1a90207c32495d9912adb683

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: llamacpp-0.1.14-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 179.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for llamacpp-0.1.14-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c892e8904831d3d0e9ed6307c2d18f6b8a750ba88f59d6af8647b3b4376da977
MD5 84f131076ec2154383f0ac506b68becd
BLAKE2b-256 8ab3e4bd87d5d29dbc761e22fa592cab25b39f782e021a3c6d390ad7a3b06975

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4e8320464f654d4eb160a3fa9b529a2b1eaf724901587fd4a2c53dfec663376b
MD5 3e6f2fe23870d15bec0d3d5df54a2ce4
BLAKE2b-256 8235566b00df380288a709e9c502131fa542ee984245b222b9a444556e6b4b0d

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ba4bf33f6cda5f4246e60d24758d7b43b704c59ac9cf11b9bd5f7c54cde2bb1f
MD5 04a43e8f9e0254ac8fead6b3abf7ba25
BLAKE2b-256 051ab39f6f8bd3acce96ef717620df59fa1c2f2c703b8865d960b791267a8cf4

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cffa2275f0f3f7d790f4fe601ffd16e74e1f03a089c907a280826caa23e9be6
MD5 d1b84c06576982081dc119aeca280b30
BLAKE2b-256 930e2d67a85d24640bc0e7d5ef5daa197f2d4fcea2bdb39e9b610434ff58e22d

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c69b07bc101c9ca418d76d7d4e8508a2b4bbd0ec7d91d359040afb590e2c49a3
MD5 87994f413d9ff7dacb4726fd2271b4ba
BLAKE2b-256 77289f0fcea9a572bef4acb7865353d6882b1de5d9e88738545e43b7ecec0499

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 abc7c5fdcca9e3b68add7fd174265d0ec25678d74100ac4640a875ed38effbd1
MD5 d56fcc8bcff7e7775259910a0a96d0e4
BLAKE2b-256 a3c0c2156e6126b4b198bfa864199f6f5e3d800c8a2fc7fcf3f0a3c976f481a8

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c5222ca3d94d43bb876965b1fa201aa6d8a9b9555fdce546095b2a3d1087d1f
MD5 7421b3a0493d2b9239802aabc95a0ef7
BLAKE2b-256 d8d6a4c404b447704209b80243da6f462745224fd4c01aa18e7d354d9281d300

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp38-cp38-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp38-cp38-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 3b4ac68cf55e7ffd1d898347ef48c3977d28345056e4b76fcd50e329bb6b0057
MD5 bd73201b4d7fa1a9905cf807ad74eb0b
BLAKE2b-256 92a6d8f71be40917df058c7d2cd986ea9574782e739cbf5941845b09e8ef0c0a

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: llamacpp-0.1.14-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 178.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for llamacpp-0.1.14-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3f53bd0abe1ac3d0c30680f0537071229c5f7e9d2fb2b1cb1282f0096928908f
MD5 46181f93a0584add9f639497205cb3ba
BLAKE2b-256 7117be971ec7415e6cfa01fe0ae11c48124c6b7f6745ef5c87520fb3e7629293

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8b1699b96f279278421c5e2df859df3d4d3785a28aa2ff984b0aacc14ee0f793
MD5 81100a7694e8e708e700db51f624eb8a
BLAKE2b-256 7b360343fb3834bf6b178b00264e8026e0c3e275e4b771fadd23585d3f5d0d0a

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 71b247979dc49cee7889983c5f4c4b1a295554100df3655024452a162c1ce985
MD5 93c877ab6d002ee43b3a0e8ccb321fe9
BLAKE2b-256 c3a270f756d1fb6405af515932637d726d8897cddca085a0c466fe99ba724f21

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffc02516886b8742d7bf17c753be74a907a600cc9edf5fc63ddaa1b7e22815c0
MD5 fac1883deb1cfc1b3d1f11b5c318a371
BLAKE2b-256 e474995c6891ec7d3bdc0d83b952092138c3b5c63e114acf5f385a5bdccf16c2

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8f52b43b2b67980a81aec61cc4368e5c28ee9895a487b5fcb82729e42cd49e79
MD5 41f663d8243fc63be415a6d74ae5bea9
BLAKE2b-256 a2bb0cb21a7358f3c729205628b6987b79283ca6f86dbe346151cc0acaa96985

See more details on using hashes here.

File details

Details for the file llamacpp-0.1.14-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for llamacpp-0.1.14-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce4379cb8ae3355d630b3edd0f08138c3c4e8ce344ea39e5e7d9f72c0b4d1c57
MD5 090a199f84e2767512b29d8da92ef7de
BLAKE2b-256 479ef3536ab627ed882fbad9dbe1e90d7478ee42606a638f0087baac1ec6ac2b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page